Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioinformatics ; 39(9)2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37682115

RESUMEN

MOTIVATION: The maturation of systems immunology methodologies requires novel and transparent computational frameworks capable of integrating diverse data modalities in a reproducible manner. RESULTS: Here, we present the ePlatypus computational immunology ecosystem for immunogenomics data analysis, with a focus on adaptive immune repertoires and single-cell sequencing. ePlatypus is an open-source web-based platform and provides programming tutorials and an integrative database that helps elucidate signatures of B and T cell clonal selection. Furthermore, the ecosystem links novel and established bioinformatics pipelines relevant for single-cell immune repertoires and other aspects of computational immunology such as predicting ligand-receptor interactions, structural modeling, simulations, machine learning, graph theory, pseudotime, spatial transcriptomics, and phylogenetics. The ePlatypus ecosystem helps extract deeper insight in computational immunology and immunogenomics and promote open science. AVAILABILITY AND IMPLEMENTATION: Platypus code used in this manuscript can be found at github.com/alexyermanos/Platypus.


Asunto(s)
Ecosistema , Ornitorrinco , Animales , Biología Computacional/métodos , Filogenia , Aprendizaje Automático , Programas Informáticos
2.
Acta Neuropathol ; 145(3): 335-355, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36695896

RESUMEN

B cells contribute to the pathogenesis of both cellular- and humoral-mediated central nervous system (CNS) inflammatory diseases through a variety of mechanisms. In such conditions, B cells may enter the CNS parenchyma and contribute to local tissue destruction. It remains unexplored, however, how infection and autoimmunity drive transcriptional phenotypes, repertoire features, and antibody functionality. Here, we profiled B cells from the CNS of murine models of intracranial (i.c.) viral infections and autoimmunity. We identified a population of clonally expanded, antibody-secreting cells (ASCs) that had undergone class-switch recombination and extensive somatic hypermutation following i.c. infection with attenuated lymphocytic choriomeningitis virus (rLCMV). Recombinant expression and characterisation of these antibodies revealed specificity to viral antigens (LCMV glycoprotein GP), correlating with ASC persistence in the brain weeks after resolved infection. Furthermore, these virus-specific ASCs upregulated proliferation and expansion programs in response to the conditional and transient induction of the LCMV GP as a neo-self antigen by astrocytes. This class-switched, clonally expanded, and mutated population persisted and was even more pronounced when peripheral B cells were depleted prior to autoantigen induction in the CNS. In contrast, the most expanded B cell clones in mice with persistent expression of LCMV GP in the CNS did not exhibit neo-self antigen specificity, potentially a consequence of local tolerance induction. Finally, a comparable population of clonally expanded, class-switched, and proliferating ASCs was detected in the cerebrospinal fluid of relapsing multiple sclerosis (RMS) patients. Taken together, our findings support the existence of B cells that populate the CNS and are capable of responding to locally encountered autoantigens.


Asunto(s)
Células Productoras de Anticuerpos , Autoantígenos , Ratones , Animales , Linfocitos B , Virus de la Coriomeningitis Linfocítica , Encéfalo
3.
Genes Immun ; 23(6): 183-195, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36028771

RESUMEN

Adaptive immune repertoires are composed by the ensemble of B and T-cell receptors within an individual, reflecting both past and current immune responses. Recent advances in single-cell sequencing enable recovery of the complete adaptive immune receptor sequences in addition to transcriptional information. Here, we recovered transcriptome and immune repertoire information for polyclonal T follicular helper cells following lymphocytic choriomeningitis virus (LCMV) infection, CD8+ T cells with binding specificity restricted to two distinct LCMV peptides, and B and T cells isolated from the nervous system in the context of experimental autoimmune encephalomyelitis. We could relate clonal expansion, germline gene usage, and clonal convergence to cell phenotypes spanning activation, memory, naive, antibody secretion, T-cell inflation, and regulation. Together, this dataset provides a resource for immunologists that can be integrated with future single-cell immune repertoire and transcriptome sequencing datasets.


Asunto(s)
Autoinmunidad , Coriomeningitis Linfocítica , Animales , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Coriomeningitis Linfocítica/genética , Ratones , Ratones Endogámicos C57BL , Péptidos , Receptores de Antígenos de Linfocitos T/genética
4.
Bioinform Adv ; 2(1): vbac062, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699357

RESUMEN

Motivation: Single-cell sequencing now enables the recovery of full-length immune receptor repertoires [B cell receptor (BCR) and T cell receptor (TCR) repertoires], in addition to gene expression information. The feature-rich datasets produced from such experiments require extensive and diverse computational analyses, each of which can significantly influence the downstream immunological interpretations, such as clonal selection and expansion. Simulations produce validated standard datasets, where the underlying generative model can be precisely defined and furthermore perturbed to investigate specific questions of interest. Currently, there is no tool that can be used to simulate single-cell datasets incorporating immune receptor repertoires and gene expression. Results: We developed Echidna, an R package that simulates immune receptors and transcriptomes at single-cell resolution with user-tunable parameters controlling a wide range of features such as clonal expansion, germline gene usage, somatic hypermutation, transcriptional phenotypes and spatial location. Echidna can additionally simulate time-resolved B cell evolution, producing mutational networks with complex selection histories incorporating class-switching and B cell subtype information. We demonstrated the benchmarking potential of Echidna by simulating clonal lineages and comparing the known simulated networks with those inferred from only the BCR sequences as input. Finally, we simulated immune repertoire information onto existing spatial transcriptomic experiments, thereby generating novel datasets that could be used to develop and integrate methods to profile clonal selection in a spatially resolved manner. Together, Echidna provides a framework that can incorporate experimental data to simulate single-cell immune repertoires to aid software development and bioinformatic benchmarking of clonotyping, phylogenetics, transcriptomics and machine learning strategies. Availability and implementation: The R package and code used in this manuscript can be found at github.com/alexyermanos/echidna and also in the R package Platypus (Yermanos et al., 2021). Installation instructions and the vignette for Echidna is described in the Platypus Computational Ecosystem (https://alexyermanos.github.io/Platypus/index.html). Publicly available data and corresponding sample accession numbers can be found in Supplementary Tables S2 and S3. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...