Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Nutr Food Res ; 61(5)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27957816

RESUMEN

SCOPE: Here we tested the hypothesis that ascorbic acid (AA) is a signaling molecule acting on stem cells via the differentiation of mesoderm derivatives, including myocytes, osteocytes, and adipocytes. MATERIAL AND METHODS: Investigations used a murine embryonic stem cell line CGR8 able to differentiate into different cell types and treated or not with ascorbic acid. Differentiation was tracked mainly through cellular anatomy (including presence of beating cardiomyocytes) and expression of specific markers. CONCLUSION: The study demonstrated that AA drives mesoderm-derived stem cell differentiation toward myogenesis and osteogenesis and also inhibits adipogenesis. Further experiments found that AA competes with retinoic acid (RA) to drive cell differentiation in a dose-dependent manner: AA inhibited neurogenic differentiation and stimulated myogenesis whereas RA did the reverse. The AA-dependent differentiation of embryonic stem cells was shown to involve a p38 MAPK/CREB pathway, probably stimulated by cAMP via adenylate cyclases. In addition, SVCT2, the intracellular transporter of AA, acted as a receptor. Finally, we showed that activation/repression of specific differentiation markers is associated with epigenetic changes in their associated promoters. We discuss the impact of these findings in terms of obesity and aging.


Asunto(s)
Ácido Ascórbico/farmacología , Proteína de Unión a CREB/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Mesodermo/citología , Transportadores de Sodio Acoplados a la Vitamina C/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Animales , Proteína de Unión a CREB/genética , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Células Madre Embrionarias/citología , Ratones , Células Musculares/citología , Células Musculares/efectos de los fármacos , Desarrollo de Músculos/efectos de los fármacos , Osteocitos/citología , Osteocitos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Transportadores de Sodio Acoplados a la Vitamina C/genética , Tretinoina/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/genética
2.
Mol Biol Cell ; 27(17): 2726-34, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27385346

RESUMEN

The tumor suppressor proteins p15(INK4B), p16(INK4A), and p14(ARF), encoded by the INK4AB/ARF locus, are crucial regulators of cellular senescence. The locus is epigenetically silenced by the repressive Polycomb complexes in growing cells but is activated in response to oncogenic stress. Here we show that the mitogen- and stress-activated kinase (MSK1) is up-regulated after RAF1 oncogenic stress and that the phosphorylated (activated) form of MSK1 is significantly increased in the nucleus and recruited to the INK4AB/ARF locus. We show that MSK1 mediates histone H3S28 phosphorylation at the INK4AB/ARF locus and contributes to the rapid transcriptional activation of p15(INK4B) and p16(INK4A) in human cells despite the presence of the repressive H3K27me3 mark. Furthermore, we show that upon MSK1 depletion in oncogenic RAF1-expressing cells, H3S28ph presence at the INK4 locus and p15(INK4B) and p16(INK4A) expression are reduced. Finally, we show that H3S28-MSK-dependent phosphorylation functions in response to RAF1 signaling and that ERK and p38α contribute to MSK1 activation in oncogene-induced senescence.


Asunto(s)
Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/fisiología , Envejecimiento/genética , Envejecimiento/metabolismo , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Histonas/metabolismo , Humanos , Fosforilación , Proteínas del Grupo Polycomb , Activación Transcripcional , Proteína p14ARF Supresora de Tumor/metabolismo
3.
Cell Rep ; 7(4): 1239-47, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24813891

RESUMEN

Despite correlations between histone methyltransferase (HMT) activity and gene regulation, direct evidence that HMT activity is responsible for gene activation is sparse. We address the role of the HMT activity for MLL1, a histone H3 lysine 4 (H3K4) methyltransferase critical for maintaining hematopoietic stem cells (HSCs). Here, we show that the SET domain, and thus HMT activity of MLL1, is dispensable for maintaining HSCs and supporting leukemogenesis driven by the MLL-AF9 fusion oncoprotein. Upon Mll1 deletion, histone H4 lysine 16 (H4K16) acetylation is selectively depleted at MLL1 target genes in conjunction with reduced transcription. Surprisingly, inhibition of SIRT1 is sufficient to prevent the loss of H4K16 acetylation and the reduction in MLL1 target gene expression. Thus, recruited MOF activity, and not the intrinsic HMT activity of MLL1, is central for the maintenance of HSC target genes. In addition, this work reveals a role for SIRT1 in opposing MLL1 function.


Asunto(s)
Hematopoyesis/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Animales , Regulación de la Expresión Génica , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Ratones , Proteína de la Leucemia Mieloide-Linfoide/genética , Sirtuina 1/genética , Sirtuina 1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Blood ; 122(12): 1995, 2013 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-24052538

RESUMEN

In this issue of Blood, Li et al report an unexpected but clinically relevant finding. They demonstrate that the mixed lineage leukemia (MLL1) gene acts independently from menin (Men1) in the hematopoietic system.


Asunto(s)
Linfocitos B/metabolismo , Células Madre Hematopoyéticas/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Animales , Femenino
5.
Cell Cycle ; 10(9): 1488-98, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21490431

RESUMEN

Nanog levels in pluripotent stem cells are heterogeneous and this is thought to reflect two different and interchangeable cell states, respectively poised to self-renew (Nanog-high subpopulation) or to differentiate (Nanog-low subpopulation). However, little is known about the mechanisms responsible for this pattern of Nanog expression. Here, we have examined the impact of the histone methyltransferase Ezh2 on pluripotent stem cells and on Nanog expression. Interestingly, induced pluripotent stem (iPS) cells lacking Ezh2 presented higher levels of Nanog due to a relative expansion of the Nanog-high subpopulation, and this was associated to severe defects in differentiation. Moreover, we found that the Nanog promoter in embryonic stem (ES) cells and iPS cells coexists in two alternative univalent chromatin configurations, either H3K4me3 or H3K27me3, the latter being dependent on the presence of functional Ezh2. Finally, the levels of expression of Ezh2, as well as the amount of H3K27me3 present at the Nanog promoter, were higher in the Nanog-low subpopulation of ES/iPS cells. Together, these data indicate that Ezh2 directly regulates the epigenetic status of the Nanog promoter affecting the balance of Nanog expression in pluripotent stem cells and, therefore, the equilibrium between self-renewal and differentiation.


Asunto(s)
Epigénesis Genética/fisiología , N-Metiltransferasa de Histona-Lisina/fisiología , Proteínas de Homeodominio/biosíntesis , Células Madre Pluripotentes/fisiología , Animales , Diferenciación Celular/genética , Células Cultivadas , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Proteína Potenciadora del Homólogo Zeste 2 , Feto/citología , Fibroblastos/citología , Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , N-Metiltransferasa de Histona-Lisina/genética , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Proteína Homeótica Nanog , Células Madre Pluripotentes/citología , Complejo Represivo Polycomb 2 , Teratoma
6.
Cell ; 138(5): 885-97, 2009 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-19737517

RESUMEN

Chromatin remodeling by Polycomb group (PcG) and trithorax group (trxG) proteins regulates gene expression in all metazoans. Two major complexes, Polycomb repressive complexes 1 and 2 (PRC1 and PRC2), are thought to mediate PcG-dependent repression in flies and mammals. In Drosophila, PcG/trxG protein complexes are recruited by PcG/trxG response elements (PREs). However, it has been unclear how PcG/trxG are recruited in vertebrates. Here we have identified a vertebrate PRE, PRE-kr, that regulates expression of the mouse MafB/Kreisler gene. PRE-kr recruits PcG proteins in flies and mouse F9 cells and represses gene expression in a PcG/trxG-dependent manner. PRC1 and 2 bind to a minimal PRE-kr region, which can recruit stable PRC1 binding but only weak PRC2 binding when introduced ectopically, suggesting that PRC1 and 2 have different binding requirements. Thus, we provide evidence that similar to invertebrates, PREs act as entry sites for PcG/trxG chromatin remodeling in vertebrates.


Asunto(s)
Expresión Génica , Proteínas Represoras/metabolismo , Elementos de Respuesta , Rombencéfalo/metabolismo , Animales , Secuencia de Bases , Línea Celular Tumoral , Pollos , Ensamble y Desensamble de Cromatina , Inversión Cromosómica , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Humanos , Factor de Transcripción MafB/genética , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb , Proteínas Represoras/química , Proteínas Represoras/genética
7.
PLoS One ; 4(5): e5622, 2009 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-19462008

RESUMEN

BACKGROUND: The INK4/ARF locus encodes three tumor suppressor genes (p15(Ink4b), Arf and p16(Ink4a)) and is frequently inactivated in a large number of human cancers. Mechanisms regulating INK4/ARF expression are not fully characterized. PRINCIPAL FINDINGS: Here we show that in young proliferating embryonic fibroblasts (MEFs) the Polycomb Repressive Complex 2 (PRC2) member EZH2 together with PRC1 members BMI1 and M33 are strongly expressed and localized at the INK4/ARF regulatory domain (RD) identified as a DNA replication origin. When cells enter senescence the binding to RD of both PRC1 and PRC2 complexes is lost leading to a decreased level of histone H3K27 trimethylation (H3K27me3). This loss is accompanied with an increased expression of the histone demethylase Jmjd3 and with the recruitment of the MLL1 protein, and correlates with the expression of the Ink4a/Arf genes. Moreover, we show that the Polycomb protein BMI1 interacts with CDC6, an essential regulator of DNA replication in eukaryotic cells. Finally, we demonstrate that Polycomb proteins and associated epigenetic marks are crucial for the control of the replication timing of the INK4a/ARF locus during senescence. CONCLUSIONS: We identified the replication licencing factor CDC6 as a new partner of the Polycomb group member BMI1. Our results suggest that in young cells Polycomb proteins are recruited to the INK4/ARF locus through CDC6 and the resulting silent locus is replicated during late S-phase. Upon senescence, Jmjd3 is overexpressed and the MLL1 protein is recruited to the locus provoking the dissociation of Polycomb from the INK4/ARF locus, its transcriptional activation and its replication during early S-phase. Together, these results provide a unified model that integrates replication, transcription and epigenetics at the INK4/ARF locus.


Asunto(s)
Senescencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Momento de Replicación del ADN , Fibroblastos/citología , Fibroblastos/metabolismo , Silenciador del Gen , Proteínas Represoras/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/química , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Embrión de Mamíferos/citología , Proteína Potenciadora del Homólogo Zeste 2 , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Metilación , Ratones , Modelos Biológicos , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Células 3T3 NIH , Proteínas Nucleares/metabolismo , Complejo Represivo Polycomb 1 , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/metabolismo
8.
Med Sci (Paris) ; 23 Spec No 3: 19-21, 2007 Oct.
Artículo en Francés | MEDLINE | ID: mdl-17939921

RESUMEN

Cellular division is essential for the survival of the multicellular organisms which contain renewable tissues. However, cellular division also puts the organisms in danger to develop any types of cancers. Cellular senescence has emerged in part as a tumor suppressor mechanism. Here we discuss the function and regulation of the tumor suppressor proteins INK4a/ARF in connection with replicative senescence, cancer and aging. double dagger.


Asunto(s)
Envejecimiento/fisiología , Senescencia Celular/fisiología , Neoplasias/epidemiología , Neoplasias/fisiopatología , Anciano , Envejecimiento/genética , Regulación del Desarrollo de la Expresión Génica , Humanos
9.
Dev Biol ; 308(2): 407-20, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17586487

RESUMEN

Members of the Tshz gene family encode putative zinc fingers transcription factors that are broadly expressed during mouse embryogenesis. Tshz1 is detected from E9.5 in the somites, the spinal cord, the limb buds and the branchial arches. In order to assess the function of Tshz1 during mouse development, we generated Tshz1-deficient mice. Tshz1 inactivation leads to neonatal lethality and causes multiple developmental defects. In the craniofacial region, loss of Tshz1 function leads to specific malformations of middle ear components, including the malleus and the tympanic ring. Tshz1(-/-) mice exhibited Hox-like vertebral malformations and homeotic transformations in the cervical and thoracic regions, suggesting that Tshz1 and Hox genes are involved in common pathways to control skeletal morphogenesis. Finally, we demonstrate that Tshz1 is required for the development of the soft palate.


Asunto(s)
Desarrollo Óseo/fisiología , Oído Medio/embriología , Paladar Blando/embriología , Proteínas Represoras/fisiología , Factores de Transcripción/fisiología , Animales , Animales Recién Nacidos , Secuencia de Bases , Tipificación del Cuerpo , Desarrollo Óseo/genética , Huesos/anomalías , Cartilla de ADN/genética , Oído Medio/anomalías , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Paladar Blando/anomalías , Embarazo , Proteínas Represoras/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
10.
Proc Natl Acad Sci U S A ; 103(17): 6629-34, 2006 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-16618927

RESUMEN

The Mll gene is a member of the mammalian trithorax group, involved with the antagonistic Polycomb group in epigenetic regulation of homeotic genes. MLL contains a highly conserved SET domain also found in various chromatin proteins. In this study, we report that mice in which this domain was deleted by homologous recombination in ES cells (DeltaSET) exhibit skeletal defects and altered transcription of particular Hox genes during development. Chromatin immunoprecipitation and bisulfite sequencing analysis on developing embryo tissues demonstrate that this change in gene expression is associated with a dramatic reduction in histone H3 Lysine 4 monomethylation and DNA methylation defects at the same Hox loci. These results establish in vivo that the major function of Mll is to act at the chromatin level to sustain the expression of selected target Hox genes during embryonic development. These observations provide previously undescribed evidence for the in vivo relationship and SET domain dependence between histone methylation and DNA methylation on MLL target genes during embryonic development.


Asunto(s)
Metilación de ADN , Genes Homeobox , Histonas/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Animales , Huesos/anomalías , Huesos/embriología , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina , Ratones , Ratones Noqueados , Ratones Mutantes , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Estructura Terciaria de Proteína , Eliminación de Secuencia
11.
Oncogene ; 23(46): 7660-8, 2004 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-15377996

RESUMEN

Polycomb group (Pc-G) proteins associate to form large complexes that repress Hox genes, thereby imposing Hox gene expression pattern required for development. However, Pc-G proteins have a Hox-independent function in controlling cell proliferation. Here we show that embryonic fibroblasts derived from M33-deficient mice are impaired in the progression into the S phase of the cell cycle, as shown by a reduced rate of incorporation of bromodeoxyuridine. These cells have a senescent phenotype, associated to an abnormal accumulation of the cyclin-dependent kinase inhibitor p16INK4a protein. We demonstrate that this defect is bypassed in mutant embryonic fibroblasts expressing a transdominant negative form of the cell cycle controlling transcription factor E2F (E2F-DB). In addition, we show that the polycomb protein M33 controls critical expansion of B- and T-lymphocyte precursors. Together, our results emphasize M33-Polycomb protein function in cell cycle control.


Asunto(s)
Proteínas de Ciclo Celular/genética , División Celular/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/fisiología , Proteínas de Unión al ADN/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Animales , Linfocitos B/fisiología , Secuencia de Bases , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , División Celular/efectos de los fármacos , Células Cultivadas , Cartilla de ADN , Factores de Transcripción E2F , Fibroblastos/citología , Fibroblastos/fisiología , Hidrocortisona/farmacología , Ratones , Ratones Noqueados , Plásmidos , Complejo Represivo Polycomb 1 , Proteínas del Grupo Polycomb , Transducción de Señal/fisiología , Linfocitos T/fisiología , Factores de Transcripción/deficiencia
12.
Gene ; 292(1-2): 33-41, 2002 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-12119097

RESUMEN

The SET domain is a highly conserved domain shared between proteins of the antagonistic trithorax and Polycomb groups. It has been shown to play an important role in the assembly of either transcriptional activating or repressing protein complexes, and possesses a histone methyl-transferase activity. We report here the characterisation of the Caenorhabditis elegans gene, set-1, encoding a conserved SET-domain protein. We have analysed the developmental expression pattern of set-1 and show that maximal expression is observed early in development when set-1 is ubiquitously expressed. Its expression is more and more restricted as development progress. Gene inactivation by RNA interference shows that set-1 is an essential gene. Functional analysis of set-1 may contribute to the understanding of the molecular role of the SET domain.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Metiltransferasas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting , Caenorhabditis elegans/crecimiento & desarrollo , ADN Complementario/química , ADN Complementario/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes de Helminto/genética , Proteínas Fluorescentes Verdes , N-Metiltransferasa de Histona-Lisina , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Datos de Secuencia Molecular , Filogenia , ARN Bicatenario/administración & dosificación , ARN Bicatenario/genética , ARN de Helminto/genética , ARN de Helminto/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...