Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 9(2): 1004-1013, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38300831

RESUMEN

Ketone bodies (KBs), especially ß-hydroxybutyrate (BHB), have gained tremendous attention as potential biomarkers as their presence in bodily fluids is closely associated with health and wellness. While a variety of blood fingerstick test strips are available for self-testing of BHB, there are major needs for wearable devices capable of continuously tracking changing BHB concentrations. To address these needs, we present here the first demonstration of a wearable microneedle-based continuous ketone monitoring (CKM) in human interstitial fluid (ISF) and illustrate its ability to closely follow the intake of ketone drinks. To ensure highly stable and selective continuous detection of ISF BHB, the new enzymatic microneedle BHB sensor relies on a gold-coated platinum working electrode modified with a reagent layer containing toluidine blue O (TBO) redox mediator, ß-hydroxybutyrate dehydrogenase (HBD) enzyme, a nicotinamide adenine dinucleotide (NAD+) cofactor, along with carbon nanotubes (CNTs), chitosan (Chit), and a poly(vinyl chloride) (PVC) outer protective layer. The skin-worn microneedle sensing device operates with a miniaturized electrochemical analyzer connected wirelessly to a mobile electronic device for capturing, processing, and displaying the data. Cytotoxicity and skin penetration studies indicate the absence of potential harmful effects. A pilot study involving multiple human subjects evaluated continuous BHB monitoring in human ISF, against gold standard BHB meter measurements, revealing the close correlation between the two methods. Such microneedle-based CKM offers considerable promise for dynamic BHB tracking toward the management of diabetic ketoacidosis and personal nutrition and wellness.


Asunto(s)
Nanotubos de Carbono , Dispositivos Electrónicos Vestibles , Humanos , Cetonas , Proyectos Piloto , Cuerpos Cetónicos , Ácido 3-Hidroxibutírico
2.
ACS Sens ; 8(10): 3892-3901, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37734056

RESUMEN

While paper-based lateral-flow immunoassays (LFA) offer considerable promise for centralized diagnostic applications, the analytical capability of conventional LFA remains constrained due to the low sensitivity of its common optical detection strategy. To address these issues, we report a simple electrochemical LFA (eLFA) with nanocatalytic redox cycling for decentralized insulin detection. Simultaneous binding of insulin with detection antibodies and capture antibodies through the capillary flow at the LFA platform and signal amplification through the rapid nanocatalytic reduction of [Fe(CN)6]3- (Fe3+) with Au nanoparticles (AuNP) and ammonia-borane (AB), coupled to electrochemical redox cycling reactions involving Fe3+, AuNP, and AB on the carbon working electrode, offer higher sensitivity than conventional colorimetric LFA and enzymatic redox cycling. The resulting integrated eLFA strip allows the detection of low insulin concentrations (LOD = 12 pM) and offers considerable promise for highly sensitive decentralized assays of different biological fluids (saliva and serum) without additional pretreatment or washing steps.


Asunto(s)
Insulina , Nanopartículas del Metal , Oro , Inmunoensayo/métodos , Insulina Regular Humana , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...