Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Magn Reson Med ; 89(4): 1297-1313, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36404676

RESUMEN

PURPOSE: To develop a manifold learning-based method that leverages the intrinsic low-dimensional structure of MR Spectroscopic Imaging (MRSI) signals for joint spectral quantification. METHODS: A linear tangent space alignment (LTSA) model was proposed to represent MRSI signals. In the proposed model, the signals of each metabolite were represented using a subspace model and the local coordinates of the subspaces were aligned to the global coordinates of the underlying low-dimensional manifold via linear transform. With the basis functions of the subspaces predetermined via quantum mechanics simulations, the global coordinates and the matrices for the local-to-global coordinate alignment were estimated by fitting the proposed LTSA model to noisy MRSI data with a spatial smoothness constraint on the global coordinates and a sparsity constraint on the matrices. RESULTS: The performance of the proposed method was validated using numerical simulation data and in vivo proton-MRSI experimental data acquired on healthy volunteers at 3T. The results of the proposed method were compared with the QUEST method and the subspace-based method. In all the compared cases, the proposed method achieved superior performance over the QUEST and the subspace-based methods both qualitatively in terms of noise and artifacts in the estimated metabolite concentration maps, and quantitatively in terms of spectral quantification accuracy measured by normalized root mean square errors. CONCLUSION: Joint spectral quantification using linear tangent space alignment-based manifold learning improves the accuracy of MRSI spectral quantification.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Humanos , Espectroscopía de Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Protones por Resonancia Magnética/métodos , Simulación por Computador , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
2.
IEEE Trans Med Imaging ; 42(1): 158-169, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36121938

RESUMEN

The spatial resolution and temporal frame-rate of dynamic magnetic resonance imaging (MRI) can be improved by reconstructing images from sparsely sampled k -space data with mathematical modeling of the underlying spatiotemporal signals. These models include sparsity models, linear subspace models, and non-linear manifold models. This work presents a novel linear tangent space alignment (LTSA) model-based framework that exploits the intrinsic low-dimensional manifold structure of dynamic images for accelerated dynamic MRI. The performance of the proposed method was evaluated and compared to state-of-the-art methods using numerical simulation studies as well as 2D and 3D in vivo cardiac imaging experiments. The proposed method achieved the best performance in image reconstruction among all the compared methods. The proposed method could prove useful for accelerating many MRI applications, including dynamic MRI, multi-parametric MRI, and MR spectroscopic imaging.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Simulación por Computador , Modelos Teóricos
3.
Magn Reson Med ; 87(4): 1832-1845, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34812547

RESUMEN

PURPOSE: To develop a cardiac T1 mapping method for free-breathing 3D T1 mapping of the whole heart at 3 T with transmit B1 ( B1+ ) correction. METHODS: A free-breathing, electrocardiogram-gated inversion-recovery sequence with spoiled gradient-echo readout was developed and optimized for cardiac T1 mapping at 3 T. High-frame-rate dynamic images were reconstructed from sparse (k,t)-space data acquired along a stack-of-stars trajectory using a subspace-based method for accelerated imaging. Joint T1 and flip-angle estimation was performed in T1 mapping to improve its robustness to B1+ inhomogeneity. Subject-specific timing of data acquisition was used in the estimation to account for natural heart-rate variations during the imaging experiment. RESULTS: Simulations showed that accuracy and precision of T1 mapping can be improved with joint T1 and flip-angle estimation and optimized electrocardiogram-gated spoiled gradient echo-based inversion-recovery acquisition scheme. The phantom study showed good agreement between the T1 maps from the proposed method and the reference method. Three-dimensional cardiac T1 maps (40 slices) were obtained at a 1.9-mm in-plane and 4.5-mm through-plane spatial resolution from healthy subjects (n = 6) with an average imaging time of 14.2 ± 1.6 minutes (heartbeat rate: 64.2 ± 7.1 bpm), showing myocardial T1 values comparable to those obtained from modified Look-Locker inversion recovery. The proposed method generated B1+ maps with spatially smooth variation showing 21%-32% and 11%-15% variations across the septal-lateral and inferior-anterior regions of the myocardium in the left ventricle. CONCLUSION: The proposed method allows free-breathing 3D T1 mapping of the whole heart with transmit B1 correction in a practical imaging time.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Corazón/diagnóstico por imagen , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Reproducibilidad de los Resultados
4.
Phys Med Biol ; 65(23): 235022, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33263317

RESUMEN

Image quality of positron emission tomography (PET) reconstructions is degraded by subject motion occurring during the acquisition. Magnetic resonance (MR)-based motion correction approaches have been studied for PET/MR scanners and have been successful at capturing regular motion patterns, when used in conjunction with surrogate signals (e.g. navigators) to detect motion. However, handling irregular respiratory motion and bulk motion remains challenging. In this work, we propose an MR-based motion correction method relying on subspace-based real-time MR imaging to estimate motion fields used to correct PET reconstructions. We take advantage of the low-rank characteristics of dynamic MR images to reconstruct high-resolution MR images at high frame rates from highly undersampled k-space data. Reconstructed dynamic MR images are used to determine motion phases for PET reconstruction and estimate phase-to-phase nonrigid motion fields able to capture complex motion patterns such as irregular respiratory and bulk motion. MR-derived binning and motion fields are used for PET reconstruction to generate motion-corrected PET images. The proposed method was evaluated on in vivo data with irregular motion patterns. MR reconstructions accurately captured motion, outperforming state-of-the-art dynamic MR reconstruction techniques. Evaluation of PET reconstructions demonstrated the benefits of the proposed method in terms of motion artifacts reduction, improving the contrast-to-noise ratio by up to a factor 3 and achieveing a target-to-background ratio up to 90% superior compared to standard/uncorrected methods. The proposed method can improve the image quality of motion-corrected PET reconstructions in clinical applications.


Asunto(s)
Artefactos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Movimiento , Imagen Multimodal , Tomografía de Emisión de Positrones , Humanos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...