Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(48): 53816-53826, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33201661

RESUMEN

Production of hydrogen (H2) upon hydrolysis of inorganic hydrides potentially is a key step in green energy production. We find that visible-light irradiation of aqueous solutions of ammonia-borane (AB) or NaBH4 containing "click"-dendrimer-stabilized alloyed nanocatalysts composed of nanogold and another late transition-metal nanoparticle (LTMNP) highly enhances catalytic activity for H2 generation while also inducing alloy to Au core@M shell nanocatalyst restructuration. In terms of visible-light-induced acceleration of H2 production from both AB and NaBH4, the Au1Ru1 alloy catalysts show the most significant light-boosting effect. Au-Rh and Au-PtNPs are also remarkable with total H2 release time from AB and NaBH4 down to 1.3 min at 25 °C (AuRh), 3 times less than in the dark, and Co is the best earth-abundant metal alloyed with nanogold. This boosting effect is explained by the transfer of plasmon-induced hot electron from the Au atoms to the LTMNP atoms facilitating water O-H oxidative addition on the LTMNP surface, as shown by the large primary kinetic isotope effect kH/kD upon using D2O obtained for both AB and NaBH4. The second simultaneous and progressive effect of visible-light irradiation during these reactions, alloy to Au core@M shell restructuration, enhances the catalytic activity in the recycling, because, in the resulting Au core@M shell, the surface metal (such as Ru) is much more active than the original Au-containing alloy surface in dark reactions. There is no light effect on the rate of hydrogen production for the recycled nanocatalyst because of the absence of Au on the NP surface, but it is still very efficient in hydrogen release during four cycles because of the initial light-induced restructuration, although it is slightly less efficient than the original nanoalloy in the presence of light. The dendritic triazole coordination on each LTMNP surface appears to play a key role in these remarkable light-induced processes.

2.
Molecules ; 23(4)2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29677169

RESUMEN

Dentromers (from dentro, δεντρο: tree in Greek), and meros (µÎµροσ, in greek: part) are introduced as a family of dendrimers constructed according to successive divergent 1 → 3 branching. The smaller dentromers have 27 terminal branches. With alcohol termini they were originally named arborols by Newkome, who pioneered 1 → 3 constructions of dendrimers and dendrons. Giant dentromers have been constructed and decorated in particular with ferrocene and other redox active groups. The synthesis, specific properties, and applications are examined in this mini review article dedicated to Don Tomalia, with an emphasis on dense peripheral packing favoring the functions of encapsulation, redox sensing, and micellar template for catalysis in water and aqueous solvents.


Asunto(s)
Dendrímeros/química , Modelos Químicos , Dendrímeros/metabolismo , Descubrimiento de Drogas , Micelas , Estructura Molecular , Oxidación-Reducción , Solventes
3.
Inorg Chem ; 52(22): 13042-7, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24171496

RESUMEN

The self-assembly of two novel metallosupramolecular complexes of the general formulas [L2M2(CH3CN)4][BF4]4 (M = Co, 1a; M = Ni, 1b), where L stands for the tetradentate ligand 3,5-bis[4-(2,2'-dipyridylamino)phenylacetylenyl]toluene, is reported together with their molecular structures ascertained by single-crystal X-ray diffraction studies. Complexes 1a and 1b are isostructural and show the formation of dinuclear meso-helicates with the two octahedral metal centers displaying respectively Δ and Λ configurations. These meso-helicates display large nanocavities with metal---metal separation distance of >2 nm; furthermore, π-π-stacking occurs among individual units to form one-dimensional (1D) polymers which further autoassemble in another direction through π-π contacts among neighboring chains to generate a two-dimensional (2D) network with regular nanocavities. Our approach might be of interest to prepare metal-organic nanotubes via a bottom-up strategy depending on the assembling functional ligand and the geometry of molecular building block.

4.
Inorg Chem ; 49(22): 10702-9, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20949935

RESUMEN

Large dendrimers, noted G(n)-3(n+2)cage, containing 3(n+2) o-carborane cluster cages MeC(2)B(10)H(10) at their peripheries (n = number of generation noted G(n)) have been synthesized by Huisgen-type azide alkyne Cu(I)-catalyzed dipolar "click" cycloaddition reactions (CuAAC) between an o-carborane monomeric cluster containing an ethynyl group and arene-centered azido-terminated dendrimers G(n)-3(n+2)N(3) of generations 0, 1, and 2. Attempts to synthesize higher-generation dendrimers of this family yielded insoluble materials. The carborane dendrimers G(0)-9cage, G(1)-27cage, and G(2)-81cage have been characterized by (1)H, (13)C, (11)B NMR, elemental analysis, matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectroscopy, and size exclusion chromatography (SEC) showing low polydispersities, dynamic light scattering (DLS) showing hydrodynamic diameters of 5.7 nm for the G(1)-27cage and the 12.9 nm for the G(2)-81cage. These dendrimers are extremely robust thermally, with 10% mass loss temperatures of 411 °C for the G(0)-9cage, 371 °C for the G(1)-27cage, and 392 °C for the G(2)-81cage. They all showed a strong absorption in the UV region peaking at 258 nm, whereas emission spectra of low intensities were observed between 280 and 480 nm.


Asunto(s)
Boranos/síntesis química , Dendrímeros/síntesis química , Boranos/química , Dendrímeros/química , Estructura Molecular , Fotoquímica
6.
Inorg Chem ; 49(13): 6085-101, 2010 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-20518495

RESUMEN

Several strategies have been used to functionalize 1,3,5-trisubstituted arene-cored dendrimers with the organometallic electron-reservoir moiety [Fe(eta(5)-C(5)H(5))(eta(6)-C(6)Me(6))](+), 1, to provide dendritic multielectron reservoirs. They all start from the carboxylic acid [Fe(eta(5)-C(5)H(4)COOH)(eta(6)-C(6)Me(6))][PF(6)], 2, or its acyl chloride derivative [Fe(eta(5)-C(5)H(4)COCl)(eta(6)-C(6)Me(6))][PF(6)], 3. For this purpose, a series of new polyamine dendrimers from G(0) to G(2) with 1--> 3 C connectivity of the branching to the core have been synthesized. Amide, "click" and ionic ammonium carboxylate linkage successfully provided G(0), G(1), and G(2) metallodendrimers with 9, 27, and 81 cationic terminal organoiron groups respectively. Further construction of large metallodendrimers up to G(7) with approximately 14 000 organoiron termini was only possible by combining amide, "click", and tether lengthening strategies to avoid steric bulk at the dendrimer periphery. Reduction of the 18-electron Fe(II) metallodendrimers, exemplified by a G(4)-DAB-64-Fe(II) complex, was achieved exergonically using the parent electron-reservoir complex [Fe(eta(5)-C(5)H(5))(eta(6)-C(6)Me(6))], 1a, at -30 degrees C in MeCN, which allowed further reduction of 64 equiv of C(60) to C(60)(*-) using the 19-electron Fe(I) metallodendrimer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...