Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 21576, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732782

RESUMEN

Many agents targeting the colchicine binding site in tubulin have been developed as potential anticancer agents. However, none has successfully made it to the clinic, due mainly to dose limiting toxicities and the emergence of multi-drug resistance. Chalcones targeting tubulin have been proposed as a safe and effective alternative. We have shown previously that quinolone chalcones target tubulin and maintain potent anti-proliferative activity vis-à-vis colchicine, while also having high tolerability and low toxicity in mouse models of cancer and refractivity to multi-drug resistance mechanisms. To identify the most effective anticancer chalcone compound, we synthesized 17 quinolone-chalcone derivatives based on our previously published CTR-17 and CTR-20, and then carried out a structure-activity relationship study. We identified two compounds, CTR-21 [((E)-8-Methoxy-3-(3-(2-methoxyphenyl)-3-oxoprop-1-enyl) quinolin-2(1H)-one)] and CTR-32 [((E)-3-(3-(2-ethoxyphenyl)-3-oxoprop-1-enyl) quinolin-2(1H)-one)] as potential leads, which contain independent moieties that play a significant role in their enhanced activities. At the nM range, CTR-21 and CTR-32 effectively kill a panel of different cancer cells originated from a variety of different tissues including breast and skin. Both compounds also effectively kill multi-drug resistant cancer cells. Most importantly, CTR-21 and CTR-32 show a high degree of selectivity against cancer cells. In silico, both of them dock near the colchicine-binding site with similar energies. Whereas both CTR-21 and CTR-32 effectively prevents tubulin polymerization, leading to the cell cycle arrest at G2/M, CTR-21 has more favorable metabolic properties. Perhaps not surprisingly, the combination of CTR-21 and ABT-737, a Bcl-2 inhibitor, showed synergistic effect in killing cancer cells, since we previously found the "parental" CTR-20 also exhibited synergism. Taken together, CTR-21 can potentially be a highly effective and relatively safe anticancer drug.


Asunto(s)
Chalconas/química , Diseño de Fármacos/métodos , Quinolonas/química , Relación Estructura-Actividad , Animales , Apoptosis , Línea Celular Tumoral , Chalconas/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Citometría de Flujo , Células HeLa , Humanos , Enlace de Hidrógeno , Leucocitos Mononucleares/metabolismo , Células MCF-7 , Ratones , Microsomas/química , Paclitaxel/farmacología , Quinolonas/farmacología , Tubulina (Proteína)/química , Moduladores de Tubulina/farmacología
2.
Acta Biomater ; 84: 305-316, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30476582

RESUMEN

The choroid of the eye is a vascularized and pigmented connective tissue lying between the retina and the sclera. Increasing evidence demonstrates that, beyond supplying nutrients to the outer retina, the different choroidal cells contribute to the retina's homeostasis, especially by paracrine signaling. However, the precise role of each cell type is currently unclear. Here, we developed a choroidal substitute using the self-assembly approach of tissue engineering. Retinal pigment epithelial (RPE) cells, as well as choroidal stromal fibroblasts, vascular endothelial cells and melanocytes, were isolated from human eye bank donor eyes. Fibroblasts were cultured in a medium containing serum and ascorbic acid. After six weeks, cells formed sheets of extracellular matrix (ECM), which were stacked to produce a tissue-engineered choroidal stroma (TECS). These stromal substitutes were then characterized and compared to the native choroid. Their ECM composition (collagens and proteoglycans) and biomechanical properties (ultimate tensile strength, strain and elasticity) were similar. Furthermore, RPE cells, human umbilical vein endothelial cells and choroidal melanocytes successfully repopulated the stromas. Physiological structures were established, such as a confluent monolayer of RPE cells, vascular-like structures and a pigmentation of the stroma. Our TECS thus recaptured the biophysical environment of the native choroid, and can serve as study models to understand the normal interactions between the RPE and choroidal cells, as well as their reciprocal exchanges with the ECM. This will consequently pave the way to derive accurate insight in the pathophysiological mechanisms of diseases affecting the choroid. STATEMENT OF SIGNIFICANCE: The choroid is traditionally known for supplying blood to the avascular outer retina. There has been a renewed attention directed towards the choroid partly due to its implication in the development of age-related macular degeneration (AMD), the leading cause of blindness in industrialized countries. Since AMD involves the dysfunction of the choroid/retinal pigment epithelium (RPE) complex, a three-dimensional (3D) model of RPE comprising the choroid layer is warranted. We used human choroidal cells to engineer a choroidal substitute. Our approach takes advantage of the ability of cells to recreate their own environment, without exogenous materials. Our model could help to better understand the role of each choroidal cell type as well as to advance the development of new therapeutics for AMD.


Asunto(s)
Coroides/metabolismo , Células Endoteliales/metabolismo , Matriz Extracelular/química , Fibroblastos/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Ingeniería de Tejidos , Anciano , Anciano de 80 o más Años , Coroides/patología , Células Endoteliales/patología , Femenino , Fibroblastos/patología , Humanos , Degeneración Macular/metabolismo , Degeneración Macular/patología , Degeneración Macular/terapia , Masculino , Persona de Mediana Edad , Epitelio Pigmentado de la Retina/patología , Esclerótica/metabolismo , Esclerótica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...