Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
N Engl J Med ; 390(7): 589-600, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354138

RESUMEN

BACKGROUND: The CD40-CD40L costimulatory pathway regulates adaptive and innate immune responses and has been implicated in the pathogenesis of multiple sclerosis. Frexalimab is a second-generation anti-CD40L monoclonal antibody being evaluated for the treatment of multiple sclerosis. METHODS: In this phase 2, double-blind, randomized trial, we assigned, in a 4:4:1:1 ratio, participants with relapsing multiple sclerosis to receive 1200 mg of frexalimab administered intravenously every 4 weeks (with an 1800-mg loading dose), 300 mg of frexalimab administered subcutaneously every 2 weeks (with a 600-mg loading dose), or the matching placebos for each active treatment. The primary end point was the number of new gadolinium-enhancing T1-weighted lesions seen on magnetic resonance imaging at week 12 relative to week 8. Secondary end points included the number of new or enlarging T2-weighted lesions at week 12 relative to week 8, the total number of gadolinium-enhancing T1-weighted lesions at week 12, and safety. After 12 weeks, all the participants could receive open-label frexalimab. RESULTS: Of 166 participants screened, 129 were assigned to a trial group; 125 participants (97%) completed the 12-week double-blind period. The mean age of the participants was 36.6 years, 66% were women, and 30% had gadolinium-enhancing lesions at baseline. At week 12, the adjusted mean number of new gadolinium-enhancing T1-weighted lesions was 0.2 (95% confidence interval [CI], 0.1 to 0.4) in the group that received 1200 mg of frexalimab intravenously and 0.3 (95% CI, 0.1 to 0.6) in the group that received 300 mg of frexalimab subcutaneously, as compared with 1.4 (95% CI, 0.6 to 3.0) in the pooled placebo group. The rate ratios as compared with placebo were 0.11 (95% CI, 0.03 to 0.38) in the 1200-mg group and 0.21 (95% CI, 0.08 to 0.56) in the 300-mg group. Results for the secondary imaging end points were generally in the same direction as those for the primary analysis. The most common adverse events were coronavirus disease 2019 and headaches. CONCLUSIONS: In a phase 2 trial involving participants with multiple sclerosis, inhibition of CD40L with frexalimab had an effect that generally favored a greater reduction in the number of new gadolinium-enhancing T1-weighted lesions at week 12 as compared with placebo. Larger and longer trials are needed to determine the long-term efficacy and safety of frexalimab in persons with multiple sclerosis. (Funded by Sanofi; ClinicalTrials.gov number, NCT04879628.).


Asunto(s)
Anticuerpos Monoclonales , Antígenos CD40 , Ligando de CD40 , Esclerosis Múltiple Recurrente-Remitente , Adulto , Femenino , Humanos , Masculino , Ligando de CD40/antagonistas & inhibidores , Ligando de CD40/inmunología , Método Doble Ciego , Gadolinio , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/inmunología , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Antígenos CD40/antagonistas & inhibidores , Antígenos CD40/inmunología , Administración Intravenosa , Inyecciones Subcutáneas
2.
Cell Rep ; 37(13): 110159, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965435

RESUMEN

Specific classes of GABAergic neurons play specific roles in regulating information processing in the brain. In the hippocampus, two major classes, parvalbumin-expressing (PV+) and somatostatin-expressing (SST+), differentially regulate endogenous firing patterns and target subcellular compartments of principal cells. How these classes regulate the flow of information throughout the hippocampus is poorly understood. We hypothesize that PV+ and SST+ interneurons in the dentate gyrus (DG) and CA3 differentially modulate CA3 patterns of output, thereby altering the influence of CA3 on CA1. We find that while suppressing either interneuron class increases DG and CA3 output, the effects on CA1 were very different. Suppressing PV+ interneurons increases local field potential signatures of coupling from CA3 to CA1 and decreases signatures of coupling from entorhinal cortex to CA1; suppressing SST+ interneurons has the opposite effect. Thus, DG and CA3 PV+ and SST+ interneurons bidirectionally modulate the flow of information through the hippocampal circuit.


Asunto(s)
Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/fisiología , Giro Dentado/fisiología , Corteza Entorrinal/fisiología , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Somatostatina/metabolismo , Potenciales de Acción , Animales , Región CA1 Hipocampal/citología , Región CA3 Hipocampal/citología , Giro Dentado/citología , Corteza Entorrinal/citología , Femenino , Neuronas GABAérgicas/citología , Interneuronas/citología , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Mol Neurodegener ; 15(1): 53, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32921309

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most frequent and costly neurodegenerative disorder. Although diverse lines of evidence suggest that the amyloid precursor protein (APP) is involved in its causation, the precise mechanisms remain unknown and no treatments are available to prevent or halt the disease. A favorite hypothesis has been that APP contributes to AD pathogenesis through the cerebral accumulation of the amyloid-ß peptide (Aß), which is derived from APP through sequential proteolytic cleavage by BACE1 and γ-secretase. However, inhibitors of these enzymes have failed in clinical trials despite clear evidence for target engagement. METHODS: To further elucidate the roles of APP and its metabolites in AD pathogenesis, we analyzed transgenic mice overexpressing wildtype human APP (hAPP) or hAPP carrying mutations that cause autosomal dominant familial AD (FAD), as well as App knock-in mice that do not overexpress hAPP but have two mouse App alleles with FAD mutations and a humanized Aß sequence. RESULTS: Although these lines of mice had marked differences in cortical and hippocampal levels of APP, APP C-terminal fragments, soluble Aß, Aß oligomers and age-dependent amyloid deposition, they all developed cognitive deficits as well as non-convulsive epileptiform activity, a type of network dysfunction that also occurs in a substantive proportion of humans with AD. Pharmacological inhibition of BACE1 effectively reduced levels of amyloidogenic APP C-terminal fragments (C99), soluble Aß, Aß oligomers, and amyloid deposits in transgenic mice expressing FAD-mutant hAPP, but did not improve their network dysfunction and behavioral abnormalities, even when initiated at early stages before amyloid deposits were detectable. CONCLUSIONS: hAPP transgenic and App knock-in mice develop similar pathophysiological alterations. APP and its metabolites contribute to AD-related functional alterations through complex combinatorial mechanisms that may be difficult to block with BACE inhibitors and, possibly, also with other anti-Aß treatments.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Conducta Animal/fisiología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Red Nerviosa/metabolismo , Red Nerviosa/patología
4.
Mol Neurodegener ; 12(1): 41, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28526038

RESUMEN

BACKGROUND: Hyperexcitability of neuronal networks can lead to excessive release of the excitatory neurotransmitter glutamate, which in turn can cause neuronal damage by overactivating NMDA-type glutamate receptors and related signaling pathways. This process (excitotoxicity) has been implicated in the pathogenesis of many neurological conditions, ranging from childhood epilepsies to stroke and neurodegenerative disorders such as Alzheimer's disease (AD). Reducing neuronal levels of the microtubule-associated protein tau counteracts network hyperexcitability of diverse causes, but whether this strategy can also diminish downstream excitotoxicity is less clear. METHODS: We established a cell-based assay to quantify excitotoxicity in primary cultures of mouse hippocampal neurons and investigated the role of tau in exicitotoxicity by modulating neuronal tau expression through genetic ablation or transduction with lentiviral vectors expressing anti-tau shRNA or constructs encoding wildtype versus mutant mouse tau. RESULTS: We demonstrate that shRNA-mediated knockdown of tau reduces glutamate-induced, NMDA receptor-dependent Ca2+ influx and neurotoxicity in neurons from wildtype mice. Conversely, expression of wildtype mouse tau enhances Ca2+ influx and excitotoxicity in tau-deficient (Mapt -/-) neurons. Reconstituting tau expression in Mapt -/- neurons with mutant forms of tau reveals that the tau-related enhancement of Ca2+ influx and excitotoxicity depend on the phosphorylation of tau at tyrosine 18 (pY18), which is mediated by the tyrosine kinase Fyn. These effects are most evident at pathologically elevated concentrations of glutamate, do not involve GluN2B-containing NMDA receptors, and do not require binding of Fyn to tau's major interacting PxxP motif or of tau to microtubules. CONCLUSIONS: Although tau has been implicated in diverse neurological diseases, its most pathogenic forms remain to be defined. Our study suggests that reducing the formation or level of pY18-tau can counteract excitotoxicity by diminishing NMDA receptor-dependent Ca2+ influx.


Asunto(s)
Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas tau/metabolismo , Animales , Células Cultivadas , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Fosforilación , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Receptores de N-Metil-D-Aspartato/efectos de los fármacos
5.
Proc Natl Acad Sci U S A ; 114(19): 5029-5034, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28438992

RESUMEN

Frontotemporal dementia (FTD) is the second most common dementia before 65 years of age. Haploinsufficiency in the progranulin (GRN) gene accounts for 10% of all cases of familial FTD. GRN mutation carriers have an increased risk of autoimmune disorders, accompanied by elevated levels of tissue necrosis factor (TNF) α. We examined behavioral alterations related to obsessive-compulsive disorder (OCD) and the role of TNFα and related signaling pathways in FTD patients with GRN mutations and in mice lacking progranulin (PGRN). We found that patients and mice with GRN mutations displayed OCD and self-grooming (an OCD-like behavior in mice), respectively. Furthermore, medium spiny neurons in the nucleus accumbens, an area implicated in development of OCD, display hyperexcitability in PGRN knockout mice. Reducing levels of TNFα in PGRN knockout mice abolished excessive self-grooming and the associated hyperexcitability of medium spiny neurons of the nucleus accumbens. In the brain, PGRN is highly expressed in microglia, which are a major source of TNFα. We therefore deleted PGRN specifically in microglia and found that it was sufficient to induce excessive grooming. Importantly, excessive grooming in these mice was prevented by inactivating nuclear factor κB (NF-κB) in microglia/myeloid cells. Our findings suggest that PGRN deficiency leads to excessive NF-κB activation in microglia and elevated TNFα signaling, which in turn lead to hyperexcitability of medium spiny neurons and OCD-like behavior.


Asunto(s)
Demencia Frontotemporal/metabolismo , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Microglía/metabolismo , FN-kappa B/metabolismo , Trastorno Obsesivo Compulsivo/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Modelos Animales de Enfermedad , Femenino , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Granulinas , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones Noqueados , Microglía/patología , FN-kappa B/genética , Trastorno Obsesivo Compulsivo/genética , Trastorno Obsesivo Compulsivo/patología , Progranulinas , Factor de Necrosis Tumoral alfa/genética
6.
EMBO Rep ; 17(4): 530-51, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26931567

RESUMEN

A152T-variant human tau (hTau-A152T) increases risk for tauopathies, including Alzheimer's disease. Comparing mice with regulatable expression of hTau-A152T or wild-type hTau (hTau-WT), we find age-dependent neuronal loss, cognitive impairments, and spontaneous nonconvulsive epileptiform activity primarily in hTau-A152T mice. However, overexpression of either hTau species enhances neuronal responses to electrical stimulation of synaptic inputs and to an epileptogenic chemical. hTau-A152T mice have higher hTau protein/mRNA ratios in brain, suggesting that A152T increases production or decreases clearance of hTau protein. Despite their functional abnormalities, aging hTau-A152T mice show no evidence for accumulation of insoluble tau aggregates, suggesting that their dysfunctions are caused by soluble tau. In human amyloid precursor protein (hAPP) transgenic mice, co-expression of hTau-A152T enhances risk of early death and epileptic activity, suggesting copathogenic interactions between hTau-A152T and amyloid-ß peptides or other hAPP metabolites. Thus, the A152T substitution may augment risk for neurodegenerative diseases by increasing hTau protein levels, promoting network hyperexcitability, and synergizing with the adverse effects of other pathogenic factors.


Asunto(s)
Envejecimiento , Neuronas/patología , Proteínas tau/genética , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Disfunción Cognitiva/fisiopatología , Modelos Animales de Enfermedad , Demencia Frontotemporal/metabolismo , Humanos , Ratones , Ratones Transgénicos , Tauopatías/genética , Tauopatías/fisiopatología , Proteínas tau/química
7.
Nat Commun ; 6: 8897, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26615780

RESUMEN

Maintaining DNA integrity is vital for all cells and organisms. Defective DNA repair may contribute to neurological disorders, including Alzheimer's disease (AD). We found reduced levels of BRCA1, but not of other DNA repair factors, in the brains of AD patients and human amyloid precursor protein (hAPP) transgenic mice. Amyloid-ß oligomers reduced BRCA1 levels in primary neuronal cultures. In wild-type mice, knocking down neuronal BRCA1 in the dentate gyrus caused increased DNA double-strand breaks, neuronal shrinkage, synaptic plasticity impairments, and learning and memory deficits, but not apoptosis. Low levels of hAPP/Amyloid-ß overexpression exacerbated these effects. Physiological neuronal activation increased BRCA1 levels, whereas stimulating predominantly extrasynaptic N-methyl-D-aspartate receptors promoted the proteasomal degradation of BRCA1. We conclude that BRCA1 is regulated by neuronal activity, protects the neuronal genome, and critically supports neuronal integrity and cognitive functions. Pathological accumulation of Aß depletes neuronal BRCA1, which may contribute to cognitive deficits in AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Proteína BRCA1/deficiencia , Encéfalo/metabolismo , Reparación del ADN , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Proteína BRCA1/genética , Encéfalo/fisiopatología , Cognición , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo
8.
J Neurosci ; 34(29): 9506-15, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25031394

RESUMEN

Excitatory and inhibitory balance of neuronal network activity is essential for normal brain function and may be of particular importance to memory. Apolipoprotein (apo) E4 and amyloid-ß (Aß) peptides, two major players in Alzheimer's disease (AD), cause inhibitory interneuron impairments and aberrant neuronal activity in the hippocampal dentate gyrus in AD-related mouse models and humans, leading to learning and memory deficits. To determine whether replacing the lost or impaired interneurons rescues neuronal signaling and behavioral deficits, we transplanted embryonic interneuron progenitors into the hippocampal hilus of aged apoE4 knock-in mice without or with Aß accumulation. In both conditions, the transplanted cells developed into mature interneurons, functionally integrated into the hippocampal circuitry, and restored normal learning and memory. Thus, restricted hilar transplantation of inhibitory interneurons restores normal cognitive function in two widely used AD-related mouse models, highlighting the importance of interneuron impairments in AD pathogenesis and the potential of cell replacement therapy for AD. More broadly, it demonstrates that excitatory and inhibitory balance are crucial for learning and memory, and suggests an avenue for investigating the processes of learning and memory and their alterations in healthy aging and diseases.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4/genética , Hipocampo/patología , Interneuronas/fisiología , Aprendizaje/fisiología , Memoria/fisiología , Células-Madre Neurales/trasplante , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/cirugía , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Técnicas In Vitro , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo
9.
Ann Neurol ; 76(3): 443-56, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25042160

RESUMEN

OBJECTIVE: Reducing levels of the microtubule-associated protein tau has shown promise as a potential treatment strategy for diseases with secondary epileptic features such as Alzheimer disease. We wanted to determine whether tau reduction may also be of benefit in intractable genetic epilepsies. METHODS: We studied a mouse model of Dravet syndrome, a severe childhood epilepsy caused by mutations in the human SCN1A gene encoding the voltage-gated sodium channel subunit Nav 1.1. We genetically deleted 1 or 2 Tau alleles in mice carrying an Nav 1.1 truncation mutation (R1407X) that causes Dravet syndrome in humans, and examined their survival, epileptic activity, related hippocampal alterations, and behavioral abnormalities using observation, electroencephalographic recordings, acute slice electrophysiology, immunohistochemistry, and behavioral assays. RESULTS: Tau ablation prevented the high mortality of Dravet mice and reduced the frequency of spontaneous and febrile seizures. It reduced interictal epileptic spikes in vivo and drug-induced epileptic activity in brain slices ex vivo. Tau ablation also prevented biochemical changes in the hippocampus indicative of epileptic activity and ameliorated abnormalities in learning and memory, nest building, and open field behaviors in Dravet mice. Deletion of only 1 Tau allele was sufficient to suppress epileptic activity and improve survival and nesting performance. INTERPRETATION: Tau reduction may be of therapeutic benefit in Dravet syndrome and other intractable genetic epilepsies.


Asunto(s)
Epilepsias Mioclónicas/metabolismo , Hipocampo/metabolismo , Convulsiones/metabolismo , Proteínas tau/metabolismo , Alelos , Animales , Conducta Animal/fisiología , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsias Mioclónicas/fisiopatología , Epilepsias Mioclónicas/terapia , Femenino , Hipocampo/patología , Hipocampo/fisiopatología , Aprendizaje/fisiología , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Convulsiones/etiología , Convulsiones/fisiopatología , Proteínas tau/genética
10.
Proc Natl Acad Sci U S A ; 110(47): E4548-56, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24191017

RESUMEN

A key neuronal mechanism for adjusting excitatory synaptic strength is clathrin-mediated endocytosis of postsynaptic glutamate receptors (GluRs). The actin cytoskeleton is critical for clathrin-mediated endocytosis, yet we lack a mechanistic understanding of its interaction with the endocytic process and how it may be regulated. Here we show that F-actin in dendritic spines physically binds the synaptic nuclear envelope 1 gene product candidate plasticity gene 2 (CPG2) in a PKA-dependent manner, and that this association is required for synaptic GluR internalization. Mutating two PKA sites on CPG2 disrupts its cytoskeletal association, attenuating GluR endocytosis and affecting the efficacy of synaptic transmission in vivo. These results identify CPG2 as an F-actin binding partner that functionally mediates interaction of the spine cytoskeleton with postsynaptic endocytosis. Further, the regulation of CPG2/F-actin association by PKA provides a gateway for cellular control of synaptic receptor internalization through second messenger signaling pathways. Recent identification of human synaptic nuclear envelope 1 as a risk locus for bipolar disorder suggests that CPG2 could play a role in synaptic dysfunction underlying neuropsychiatric disease.


Asunto(s)
Actinas/metabolismo , Citoesqueleto/fisiología , Endocitosis/fisiología , Proteínas del Tejido Nervioso/metabolismo , Receptores de Glutamato/metabolismo , Sinapsis/fisiología , Análisis de Varianza , Animales , Clonación Molecular , Inmunohistoquímica , Inmunoprecipitación , Lentivirus , Espectrometría de Masas , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/metabolismo , Técnicas de Placa-Clamp , Fosforilación , Ratas , Ratas Long-Evans
11.
J Neurosci ; 32(39): 13529-36, 2012 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-23015442

RESUMEN

Rett syndrome (Rett) is the leading genetic cause of mental retardation in females. Most cases of Rett are caused by loss-of-function mutations in the gene coding for the transcriptional regulator methyl-CpG binding protein 2 (MeCP2), but despite much effort, it remains unclear how a loss of MeCP2 function generates the neurological deficits of Rett. Here we show that MeCP2 plays an essential and cell-autonomous role in homeostatic synaptic scaling up in response to reduced firing or reduced sensory drive in rat visual cortical pyramidal neurons. We found that acute RNAi knockdown of MeCP2 blocked synaptic scaling within targeted neocortical pyramidal neurons. Furthermore, MeCP2 knockdown decreased excitatory synapse number without affecting basal mEPSC amplitude or AMPAR accumulation at spared synapses, demonstrating that MeCP2 acts cell-autonomously to maintain both excitatory synapse number and synaptic scaling in individual neocortical neurons. Finally, we used a mouse model of Rett to show that MeCP2 loss prevents homeostatic synaptic scaling up in response to visual deprivation in vivo, demonstrating for the first time that MeCP2 loss disrupts homeostatic plasticity within the intact developing neocortex. Our results establish MeCP2 as a critical mediator of synaptic scaling and raise the possibility that some of the neurological defects of Rett arise from a disruption of homeostatic plasticity.


Asunto(s)
Corteza Cerebral/citología , Proteína 2 de Unión a Metil-CpG/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Análisis de Varianza , Anestésicos Locales/farmacología , Animales , Animales Recién Nacidos , Células Cultivadas , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Técnicas In Vitro , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Noqueados , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Quinoxalinas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Long-Evans , Receptores AMPA/metabolismo , Estadísticas no Paramétricas , Sinapsis/genética , Tetrodotoxina/farmacología , Transfección , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
12.
J Neurosci ; 30(47): 15769-77, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21106816

RESUMEN

The K(ir)4.1 channel is crucial for the maintenance of the resting membrane potential of glial cells, and it is believed to play a main role in the homeostasis of extracellular potassium. To understand its importance in these two phenomena, we have measured in vivo the variations of extracellular potassium concentration ([K(+)](o)) (with potassium-sensitive microelectrodes) and membrane potential of glial cells (with sharp electrodes) during stimulations in wild-type (WT) mice and glial-conditional knock-out (cKO) K(ir)4.1 mice. The conditional knockout was driven by the human glial fibrillary acidic protein promoter, gfa2. Experiments were performed in the hippocampus of anesthetized mice (postnatal days 17-24). Low level stimulation (<20 stimuli, 10 Hz) induced a moderated increase of [K(+)](o) (<2 mm increase) in both WT and cKO mice. However, cKO mice exhibited slower recovery of [K(+)](o) levels. With long-lasting stimulation (300 stimuli, 10 Hz), [K(+)](o) in WT and cKO mice displayed characteristic ceiling level (>2 mm increase) and recovery undershoot, with a more pronounced and prolonged undershoot in cKO mice. In addition, cKO glial cells were more depolarized, and, in contrast to those from WT mice, their membrane potential did not follow the stimulation-induced [K(+)](o) changes, reflecting the loss of their high potassium permeability. Our in vivo results support the role of K(ir)4.1 in setting the membrane potential of glial cells and its contribution to the glial potassium permeability. In addition, our data confirm the necessity of the K(ir)4.1 channel for an efficient uptake of K(+) by glial cells.


Asunto(s)
Anestesia , Neuroglía/metabolismo , Canales de Potasio de Rectificación Interna/fisiología , Potasio/metabolismo , Animales , Astrocitos/enzimología , Astrocitos/metabolismo , Permeabilidad de la Membrana Celular/genética , Permeabilidad de la Membrana Celular/fisiología , Líquido Extracelular/metabolismo , Humanos , Integrasas/genética , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Ratones Transgénicos , Canales de Potasio de Rectificación Interna/deficiencia , Canales de Potasio de Rectificación Interna/genética
13.
J Neurosci ; 27(42): 11354-65, 2007 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-17942730

RESUMEN

During neuronal activity, extracellular potassium concentration ([K+]out) becomes elevated and, if uncorrected, causes neuronal depolarization, hyperexcitability, and seizures. Clearance of K+ from the extracellular space, termed K+ spatial buffering, is considered to be an important function of astrocytes. Results from a number of studies suggest that maintenance of [K+]out by astrocytes is mediated by K+ uptake through the inward-rectifying Kir4.1 channels. To study the role of this channel in astrocyte physiology and neuronal excitability, we generated a conditional knock-out (cKO) of Kir4.1 directed to astrocytes via the human glial fibrillary acidic protein promoter gfa2. Kir4.1 cKO mice die prematurely and display severe ataxia and stress-induced seizures. Electrophysiological recordings revealed severe depolarization of both passive astrocytes and complex glia in Kir4.1 cKO hippocampal slices. Complex cell depolarization appears to be a direct consequence of Kir4.1 removal, whereas passive astrocyte depolarization seems to arise from an indirect developmental process. Furthermore, we observed a significant loss of complex glia, suggestive of a role for Kir4.1 in astrocyte development. Kir4.1 cKO passive astrocytes displayed a marked impairment of both K+ and glutamate uptake. Surprisingly, membrane and action potential properties of CA1 pyramidal neurons, as well as basal synaptic transmission in the CA1 stratum radiatum appeared unaffected, whereas spontaneous neuronal activity was reduced in the Kir4.1 cKO. However, high-frequency stimulation revealed greatly elevated posttetanic potentiation and short-term potentiation in Kir4.1 cKO hippocampus. Our findings implicate a role for glial Kir4.1 channel subunit in the modulation of synaptic strength.


Asunto(s)
Ácido Glutámico/metabolismo , Potenciales de la Membrana/fisiología , Neuroglía/metabolismo , Canales de Potasio de Rectificación Interna/deficiencia , Potasio/metabolismo , Subunidades de Proteína/deficiencia , Transmisión Sináptica/fisiología , Animales , Membrana Celular/metabolismo , Membrana Celular/fisiología , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuroglía/fisiología , Potasio/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/fisiología , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Transmisión Sináptica/genética
14.
Glia ; 55(7): 675-86, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17311295

RESUMEN

Connexin43 (Cx43) is the predominant gap junction protein expressed in premitotic radial glial cells and mature astrocytes. It is thought to play a role in many aspects of brain development and physiology, including intercellular communication, the release of neuroactive substances, and neural and glial proliferation and migration. To investigate the role of Cx43 in brain physiology, we generated a conditional knockout (cKO) mouse expressing Cre recombinase driven by the human GFAP promoter and a floxed Cx43 gene. The removal of Cx43 from GFAP-expressing cells affects the behavior of the mice and the development of several brain structures; however, the severity of the phenotype varies depending on the mouse background. One mouse subline, hereafter termed Shuffler, exhibits cellular disorganization of the cortex, hippocampus, and cerebellum, accompanied by ataxia and motor deficits. The Shuffler cerebellum is most affected and displays altered distribution and lamination of glia and neurons suggestive of cell migration defects. In all Shuffler mice by postnatal day two (P2), the hippocampus, cortex, and cerebellum are smaller. Disorganization of the ventricular and subventricular zone of the cortex is also evident. Given that these are sites of early progenitor cell proliferation, we suspect production and migration of neural progenitors may be altered. In conclusion, neurodevelopment of Shuffler/Cx43 cKO mice is abnormal, and the observed cellular phenotype may explain behavioral disturbances seen in these animals as well as in humans carrying Cx43 mutations.


Asunto(s)
Encéfalo/anomalías , Encéfalo/metabolismo , Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Malformaciones del Sistema Nervioso/metabolismo , Animales , Diferenciación Celular/genética , Movimiento Celular/genética , Proliferación Celular , Conexina 43/genética , Uniones Comunicantes/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes Neurológicos , Ratones Transgénicos , Malformaciones del Sistema Nervioso/genética , Neuroglía/metabolismo , Neuronas/metabolismo , Neuronas/patología , Regiones Promotoras Genéticas/genética , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA