Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 16(5)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38794346

RESUMEN

Over the past decade, mRNA-based therapy has displayed significant promise in a wide range of clinical applications. The most striking example of the leap in the development of mRNA technologies was the mass vaccination against COVID-19 during the pandemic. The emergence of large-scale technology and positive experience of mRNA immunization sparked the development of antiviral and anti-cancer mRNA vaccines as well as therapeutic mRNA agents for genetic and other diseases. To facilitate mRNA delivery, lipid nanoparticles (LNPs) have been successfully employed. However, the diverse use of mRNA therapeutic approaches requires the development of adaptable LNP delivery systems that can control the kinetics of mRNA uptake and expression in target cells. Here, we report effective mRNA delivery into cultured mammalian cells (HEK293T, HeLa, DC2.4) and living mouse muscle tissues by liposomes containing either 1,26-bis(cholest-5-en-3ß-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride (2X3) or the newly applied 1,30-bis(cholest-5-en-3ß-yloxycarbonylamino)-9,13,18,22-tetraaza-3,6,25,28-tetraoxatriacontane tetrahydrochloride (2X7) cationic lipids. Using end-point and real-time monitoring of Fluc mRNA expression, we showed that these LNPs exhibited an unusually delayed (of over 10 h in the case of the 2X7-based system) but had highly efficient and prolonged reporter activity in cells. Accordingly, both LNP formulations decorated with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2000) provided efficient luciferase production in mice, peaking on day 3 after intramuscular injection. Notably, the bioluminescence was observed only at the site of injection in caudal thigh muscles, thereby demonstrating local expression of the model gene of interest. The developed mRNA delivery systems hold promise for prophylactic applications, where sustained synthesis of defensive proteins is required, and open doors to new possibilities in mRNA-based therapies.

2.
Nucl Med Biol ; 134-135: 108928, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38776715

RESUMEN

The radiotherapeutic 195mPt is among the most effective Auger electron emitters of the currently studied radionuclides that have a potential theranostic application in nuclear medicine. Production of 195mPt through double neuron capture of enriched 193Ir followed by ß--decay to the radioisotope of interest carried out at the research reactor IBR-2 is described. Because of the high radiation background, radiochemical purification procedure of 195mPt from bulk of iridium was needed to be developed and is detailed here as well. For the first time, cross section and resonance integral for the reaction 194Ir(n,γ)195mIr were determined. Resonance neutrons contribution was established to exceed that of thermal neutrons, and resonance integral for the reaction 194Ir(n,γ)195mIr is calculated to be 2900 b. Specific activity of 195mPt was estimated to reach a value of 38.7 GBq/(g Pt) at IBR-2 by the end of bombardment (EOB).


Asunto(s)
Neutrones , Reactores Nucleares , Radioquímica , Radioisótopos/química
3.
Front Immunol ; 15: 1381508, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690272

RESUMEN

Seasonal influenza remains a serious global health problem, leading to high mortality rates among the elderly and individuals with comorbidities. Vaccination is generally accepted as the most effective strategy for influenza prevention. While current influenza vaccines are effective, they still have limitations, including narrow specificity for certain serological variants, which may result in a mismatch between vaccine antigens and circulating strains. Additionally, the rapid variability of the virus poses challenges in providing extended protection beyond a single season. Therefore, mRNA technology is particularly promising for influenza prevention, as it enables the rapid development of multivalent vaccines and allows for quick updates of their antigenic composition. mRNA vaccines have already proven successful in preventing COVID-19 by eliciting rapid cellular and humoral immune responses. In this study, we present the development of a trivalent mRNA vaccine candidate, evaluate its immunogenicity using the hemagglutination inhibition assay, ELISA, and assess its efficacy in animals. We demonstrate the higher immunogenicity of the mRNA vaccine candidate compared to the inactivated split influenza vaccine and its enhanced ability to generate a cross-specific humoral immune response. These findings highlight the potential mRNA technology in overcoming current limitations of influenza vaccines and hold promise for ensuring greater efficacy in preventing seasonal influenza outbreaks.


Asunto(s)
Inmunidad Humoral , Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Vacunas de ARNm , Animales , Femenino , Humanos , Ratones , Reacciones Cruzadas/inmunología , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunidad Humoral/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/química , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Ratones Endogámicos BALB C , Vacunas de ARNm/administración & dosificación , Vacunas de ARNm/química , Vacunas de ARNm/genética , Vacunas de ARNm/inmunología , Estaciones del Año , Factores de Tiempo , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología
4.
Vaccines (Basel) ; 12(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38675761

RESUMEN

SARS-CoV-2 variants have evolved over time in recent years, demonstrating immune evasion of vaccine-induced neutralizing antibodies directed against the original S protein. Updated S-targeted vaccines provide a high level of protection against circulating variants of SARS-CoV-2, but this protection declines over time due to ongoing virus evolution. To achieve a broader protection, novel vaccine candidates involving additional antigens with low mutation rates are currently needed. Based on our recently studied mRNA lipid nanoparticle (mRNA-LNP) platform, we have generated mRNA-LNP encoding SARS-CoV-2 structural proteins M, N, S from different virus variants and studied their immunogenicity separately or in combination in vivo. As a result, all mRNA-LNP vaccine compositions encoding the S and N proteins induced excellent titers of RBD- and N-specific binding antibodies. The T cell responses were mainly specific CD4+ T cell lymphocytes producing IL-2 and TNF-alpha. mRNA-LNP encoding the M protein did not show a high immunogenicity. High neutralizing activity was detected in the sera of mice vaccinated with mRNA-LNP encoding S protein (alone or in combinations) against closely related strains, but was undetectable or significantly lower against an evolutionarily distant variant. Our data showed that the addition of mRNAs encoding S and M antigens to mRNA-N in the vaccine composition enhanced the immunogenicity of mRNA-N and induced a more robust immune response to the N protein. Based on our results, we suggested that the S protein plays a key role in enhancing the immune response to the N protein when they are both encoded in the mRNA-LNP vaccine.

5.
Biochemistry (Mosc) ; 89(2): 313-321, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38622098

RESUMEN

AgeMeta is a database that provides systemic and quantitative description of mammalian aging at the level of gene expression. It encompasses transcriptomic changes with age across various tissues of humans, mice, and rats, based on a comprehensive meta-analysis of 122 publicly available gene expression datasets from 26 studies. AgeMeta provides an intuitive visual interface for quantification of aging-associated transcriptomics at the level of individual genes and functional groups of genes, allowing easy comparison among various species and tissues. Additionally, all the data in the database can be downloaded and analyzed independently. Overall, this work contributes to the understanding of the complex network of biological processes underlying mammalian aging and supports future advancements in this field. AgeMeta is freely available at: https://age-meta.com/.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Ratas , Ratones , Humanos , Animales , Envejecimiento/genética , Bases de Datos Factuales , Mamíferos/genética
6.
Semin Cell Dev Biol ; 154(Pt B): 138-154, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-37357122

RESUMEN

Cellular stress is an intrinsic part of cell physiology that underlines cell survival or death. The ability of mammalian cells to regulate global protein synthesis (aka translational control) represents a critical, yet underappreciated, layer of regulation during the stress response. Various cellular stress response pathways monitor conditions of cell growth and subsequently reshape the cellular translatome to optimize translational outputs. On the molecular level, such translational reprogramming involves an intricate network of interactions between translation machinery, RNA-binding proteins, mRNAs, and non-protein coding RNAs. In this review, we will discuss molecular mechanisms, signaling pathways, and targets of translational control that contribute to cellular adaptation to stress and to cell survival or death.


Asunto(s)
Biosíntesis de Proteínas , Transducción de Señal , Animales , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Muerte Celular , Mamíferos/genética
7.
Phys Rev E ; 108(5-1): 054221, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38115418

RESUMEN

A thermal diode or rectifier is a system that transmits heat or energy in one direction better than in the opposite direction. We investigate the influence of the distribution of energy among wave numbers on the diode effect for the junction of two dissimilar harmonic chains. An analytical expression for the diode coefficient, characterizing the difference between heat fluxes through the junction in two directions, is derived. It is shown that the diode coefficient depends on the distribution of energy among wave numbers. For an equilibrium energy distribution, the diode effect is absent, while for non-equilibrium energy distributions the diode effect is observed even though the system is harmonic. We show that the diode effect can be maximized by varying the energy distribution and relative position of spectra of the two harmonic chains. Conditions are formulated under which the system acts as an ideal thermal rectifier, i.e., transmits heat only in one direction. The results obtained are important for understanding the heat transfer in heterogeneous low-dimensional nanomaterials.

8.
Biochemistry (Mosc) ; 88(11): 1786-1799, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38105199

RESUMEN

In response to stress stimuli, eukaryotic cells typically suppress protein synthesis. This leads to the release of mRNAs from polysomes, their condensation with RNA-binding proteins, and the formation of non-membrane-bound cytoplasmic compartments called stress granules (SGs). SGs contain 40S but generally lack 60S ribosomal subunits. It is known that cycloheximide, emetine, and anisomycin, the ribosome inhibitors that block the progression of 80S ribosomes along mRNA and stabilize polysomes, prevent SG assembly. Conversely, puromycin, which induces premature termination, releases mRNA from polysomes and stimulates the formation of SGs. The same effect is caused by some translation initiation inhibitors, which lead to polysome disassembly and the accumulation of mRNAs in the form of stalled 48S preinitiation complexes. Based on these and other data, it is believed that the trigger for SG formation is the presence of mRNA with extended ribosome-free segments, which tend to form condensates in the cell. In this study, we evaluated the ability of various small-molecule translation inhibitors to block or stimulate the assembly of SGs under conditions of severe oxidative stress induced by sodium arsenite. Contrary to expectations, we found that ribosome-targeting elongation inhibitors of a specific type, which arrest solitary 80S ribosomes at the beginning of the mRNA coding regions but do not interfere with all subsequent ribosomes in completing translation and leaving the transcripts (such as harringtonine, lactimidomycin, or T-2 toxin), completely prevent the formation of arsenite-induced SGs. These observations suggest that the presence of even a single 80S ribosome on mRNA is sufficient to prevent its recruitment into SGs, and the presence of extended ribosome-free regions of mRNA is not sufficient for SG formation. We propose that mRNA entry into SGs may be mediated by specific contacts between RNA-binding proteins and those regions on 40S subunits that remain inaccessible when ribosomes are associated.


Asunto(s)
Biosíntesis de Proteínas , Gránulos de Estrés , ARN Mensajero/metabolismo , Gránulos Citoplasmáticos , Ribosomas/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas de Unión al ARN/metabolismo
9.
bioRxiv ; 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37873388

RESUMEN

To evaluate the properties of insect virus internal ribosomal entry sites (IRESs) for protein expression in Drosophila, we have introduced Cricket Paralysis virus (CrPV) and Drosophila C virus (DCV) IRESs into UAS/SV40-polyA vector. We found that introduction of IRESs induce premature polyadenylation, resulting in both truncation of the mRNA, and an increase in mRNA levels of approximately 40-fold. The increase in mRNA levels was accompanied by increased resistance to nonsense-mediated mRNA decay (NMD)-mediated degradation. Our results suggest that premature polyadenylation increases mRNA stability in the SV40 polyadenylation site-containing constructs, suggesting a novel method for robust overexpression of transgenes in Drosophila.

10.
Nat Aging ; 3(8): 948-964, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37500973

RESUMEN

Heterochronic parabiosis (HPB) is known for its functional rejuvenation effects across several mouse tissues. However, its impact on biological age and long-term health is unknown. Here we performed extended (3-month) HPB, followed by a 2-month detachment period of anastomosed pairs. Old detached mice exhibited improved physiological parameters and lived longer than control isochronic mice. HPB drastically reduced the epigenetic age of blood and liver based on several clock models using two independent platforms. Remarkably, this rejuvenation effect persisted even after 2 months of detachment. Transcriptomic and epigenomic profiles of anastomosed mice showed an intermediate phenotype between old and young, suggesting a global multi-omic rejuvenation effect. In addition, old HPB mice showed gene expression changes opposite to aging but akin to several life span-extending interventions. Altogether, we reveal that long-term HPB results in lasting epigenetic and transcriptome remodeling, culminating in the extension of life span and health span.


Asunto(s)
Longevidad , Rejuvenecimiento , Ratones , Animales , Longevidad/genética , Multiómica , Envejecimiento/genética
11.
bioRxiv ; 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37502856

RESUMEN

Cells exhibit stress responses to various environmental changes. Among these responses, the integrated stress response (ISR) plays a pivotal role as a crucial stress signaling pathway. While extensive ISR research has been conducted on cultured cells, our understanding of its implications in multicellular organisms remains limited, largely due to the constraints of current techniques that hinder our ability to track and manipulate the ISR in vivo. To overcome these limitations, we have successfully developed an internal ribosome entry site (IRES)-based fluorescent reporter system. This innovative reporter enables us to label Drosophila cells, within the context of a living organism, that exhibit eIF2 phosphorylation-dependent translational shutoff - a characteristic feature of the ISR and viral infections. Through this methodology, we have unveiled tissue- and cell-specific regulation of stress response in Drosophila flies and have even been able to detect stressed tissues in vivo during virus and bacterial infections. To further validate the specificity of our reporter, we have engineered ISR-null eIF2αS50A mutant flies for stress response analysis. Our results shed light on the tremendous potential of this technique for investigating a broad range of developmental, stress, and infection-related experimental conditions. Combining the reporter tool with ISR-null mutants establishes Drosophila as an exceptionally powerful model for studying the ISR in the context of multicellular organisms.

12.
Phys Rev E ; 107(5-1): 054216, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37329037

RESUMEN

The nonlinear dynamics of a one-dimensional molecular crystal in the form of a chain of planar coronene molecules is analyzed. Using molecular dynamics, it is shown that a chain of coronene molecules supports acoustic solitons, rotobreathers, and discrete breathers. An increase in the size of planar molecules in a chain leads to an increase in the number of internal degrees of freedom. This results in an increase in the rate of emission of phonons from spatially localized nonlinear excitations and a decrease in their lifetime. Presented results contribute to the understanding of the effect of the rotational and internal vibrational modes of molecules on the nonlinear dynamics of molecular crystals.


Asunto(s)
Dinámicas no Lineales , Compuestos Policíclicos , Vibración , Simulación de Dinámica Molecular
13.
Cell ; 186(13): 2929-2949.e20, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37269831

RESUMEN

Lifespan varies within and across species, but the general principles of its control remain unclear. Here, we conducted multi-tissue RNA-seq analyses across 41 mammalian species, identifying longevity signatures and examining their relationship with transcriptomic biomarkers of aging and established lifespan-extending interventions. An integrative analysis uncovered shared longevity mechanisms within and across species, including downregulated Igf1 and upregulated mitochondrial translation genes, and unique features, such as distinct regulation of the innate immune response and cellular respiration. Signatures of long-lived species were positively correlated with age-related changes and enriched for evolutionarily ancient essential genes, involved in proteolysis and PI3K-Akt signaling. Conversely, lifespan-extending interventions counteracted aging patterns and affected younger, mutable genes enriched for energy metabolism. The identified biomarkers revealed longevity interventions, including KU0063794, which extended mouse lifespan and healthspan. Overall, this study uncovers universal and distinct strategies of lifespan regulation within and across species and provides tools for discovering longevity interventions.


Asunto(s)
Longevidad , Fosfatidilinositol 3-Quinasas , Animales , Ratones , Longevidad/genética , Fosfatidilinositol 3-Quinasas/genética , Envejecimiento/genética , Mamíferos/genética , Perfilación de la Expresión Génica
14.
Int J Mol Sci ; 24(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37176068

RESUMEN

While protein synthesis is vital for the majority of cell types of the human body, diversely differentiated cells require specific translation regulation. This suggests the specialization of translation machinery across tissues and organs. Using transcriptomic data from GTEx, FANTOM, and Gene Atlas, we systematically explored the abundance of transcripts encoding translation factors and aminoacyl-tRNA synthetases (ARSases) in human tissues. We revised a few known and identified several novel translation-related genes exhibiting strict tissue-specific expression. The proteins they encode include eEF1A1, eEF1A2, PABPC1L, PABPC3, eIF1B, eIF4E1B, eIF4ENIF1, and eIF5AL1. Furthermore, our analysis revealed a pervasive tissue-specific relative abundance of translation machinery components (e.g., PABP and eRF3 paralogs, eIF2B and eIF3 subunits, eIF5MPs, and some ARSases), suggesting presumptive variance in the composition of translation initiation, elongation, and termination complexes. These conclusions were largely confirmed by the analysis of proteomic data. Finally, we paid attention to sexual dimorphism in the repertoire of translation factors encoded in sex chromosomes (eIF1A, eIF2γ, and DDX3), and identified the testis and brain as organs with the most diverged expression of translation-associated genes.


Asunto(s)
Aminoacil-ARNt Sintetasas , Proteómica , Humanos , Factores de Iniciación de Péptidos , Factor 1 de Elongación Peptídica
15.
Front Immunol ; 14: 1098302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36865543

RESUMEN

Single-domain antibodies (sdAbs, VHHs, or nanobodies) are a promising tool for the treatment of both infectious and somatic diseases. Their small size greatly simplifies any genetic engineering manipulations. Such antibodies have the ability to bind hard-to-reach antigenic epitopes through long parts of the variable chains, the third complementarity-determining regions (CDR3s). VHH fusion with the canonical immunoglobulin Fc fragment allows the Fc-fusion single-domain antibodies (VHH-Fc) to significantly increase their neutralizing activity and serum half-life. Previously we have developed and characterized VHH-Fc specific to botulinum neurotoxin A (BoNT/A), that showed a 1000-fold higher protective activity than monomeric form when challenged with five times the lethal dose (5 LD50) of BoNT/A. During the COVID-19 pandemic, mRNA vaccines based on lipid nanoparticles (LNP) as a delivery system have become an important translational technology that has significantly accelerated the clinical introduction of mRNA platforms. We have developed an mRNA platform that provides long-term expression after both intramuscular and intravenous application. The platform has been extensively characterized using firefly luciferase (Fluc) as a reporter. An intramuscular administration of LNP-mRNA encoding VHH-Fc antibody made it possible to achieve its rapid expression in mice and resulted in 100% protection when challenged with up to 100 LD50 of BoNT/A. The presented approach for the delivery of sdAbs using mRNA technology greatly simplifies drug development for antibody therapy and can be used for emergency prophylaxis.


Asunto(s)
Toxinas Botulínicas Tipo A , COVID-19 , Anticuerpos de Dominio Único , Animales , Humanos , Ratones , Anticuerpos de Dominio Único/genética , Pandemias , Relación Dosis-Respuesta a Droga
16.
Cells ; 12(2)2023 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-36672194

RESUMEN

Upon oxidative stress, mammalian cells rapidly reprogram their translation. This is accompanied by the formation of stress granules (SGs), cytoplasmic ribonucleoprotein condensates containing untranslated mRNA molecules, RNA-binding proteins, 40S ribosomal subunits, and a set of translation initiation factors. Here we show that arsenite-induced stress causes a dramatic increase in the stop-codon readthrough rate and significantly elevates translation reinitiation levels on uORF-containing and bicistronic mRNAs. We also report the recruitment of translation termination factors eRF1 and eRF3, as well as ribosome recycling and translation reinitiation factors ABCE1, eIF2D, MCT-1, and DENR to SGs upon arsenite treatment. Localization of these factors to SGs may contribute to a rapid resumption of mRNA translation after stress relief and SG disassembly. It may also suggest the presence of post-termination, recycling, or reinitiation complexes in SGs. This new layer of translational control under stress conditions, relying on the altered spatial distribution of translation factors between cellular compartments, is discussed.


Asunto(s)
Arsenitos , Animales , Codón de Terminación , Arsenitos/farmacología , Arsenitos/metabolismo , Ribosomas/metabolismo , Gránulos de Estrés , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Oxidativo , Mamíferos/metabolismo
17.
Viruses ; 14(11)2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36366584

RESUMEN

Many viruses are known to trigger endoplasmic reticulum (ER) stress in host cells, which in turn can develop a protective unfolded protein response (UPR). Depending on the conditions, the UPR may lead to either cell survival or programmed cell death. One of three UPR branches involves the upregulation of Xbp1 transcription factor caused by the unconventional cytoplasmic splicing of its mRNA. This process is accomplished by the phosphorylated form of the endoribonuclease/protein kinase Ire1/ERN1. Here, we show that the phosphorylation of Ire1 is up-regulated in HeLa cells early in enterovirus infection but down-regulated at later stages. We also find that Ire1 is cleaved in poliovirus- and coxsackievirus-infected HeLa cells 4-6 h after infection. We further show that the Ire1-mediated Xbp1 mRNA splicing is repressed in infected cells in a time-dependent manner. Thus, our results demonstrate the ability of enteroviruses to actively modulate the Ire1-Xbp1 host defensive pathway by inducing phosphorylation and proteolytic cleavage of the ER stress sensor Ire1, as well as down-regulating its splicing activity. Inactivation of Ire1 could be a novel mode of the UPR manipulation employed by viruses to modify the ER stress response in the infected cells.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Humanos , Estrés del Retículo Endoplásmico , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Enterovirus/genética , Células HeLa , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , Transducción de Señal , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
18.
Materials (Basel) ; 15(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36295327

RESUMEN

In this work, the mass transfer along an octahedral channel in an fcc copper single crystal is studied for the first time using the method of molecular dynamics. It is found that the initial position of the bombarding atom, outside or inside the crystal, does not noticeably affect the dynamics of its motion. The higher the initial velocity of the bombarding atom, the deeper its penetration into the material. It is found out how the place of entry of the bombarding atom into the channel affects its further dynamics. The greatest penetration depth and the smallest dissipation of kinetic energy occurs when the atom moves exactly in the center of the octahedral channel. The deviation of the bombarding atom from the center of the channel leads to the appearance of other velocity components perpendicular to the initial velocity vector and to an increase in its energy dissipation. Nevertheless, the motion of an atom along the channel is observed even when the entry point deviates from the center of the channel by up to 0.5 Å. The dissipated kinetic energy spent on the excitation of the atoms forming the octahedral channel is nearly proportional to the deviation from the center of the channel. At sufficiently high initial velocities of the bombarding atom, supersonic crowdions are formed, moving along the close-packed direction ⟨1¯10⟩, which is perpendicular to the direction of the channel. The results obtained are useful for understanding the mechanism of mass transfer during ion implantation and similar experimental techniques.

19.
Materials (Basel) ; 15(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36079279

RESUMEN

Stanene, composed of tin atoms, is a member of 2D-Xenes, two-dimensional single element materials. The properties of the stanene can be changed and improved by applying deformation, and it is important to know the range of in-plane deformation that the stanene can withstand. Using the Tersoff interatomic potential for calculation of phonon frequencies, the range of stability of planar stanene under uniform in-plane deformation is analyzed and compared with the known data for graphene. Unlike atomically flat graphene, stanene has a certain thickness (buckling height). It is shown that as the tensile strain increases, the thickness of the buckled stanene decreases, and when a certain tensile strain is reached, the stanene becomes absolutely flat, like graphene. Postcritical behaviour of stanene depends on the type of applied strain: critical tensile strain leads to breaking of interatomic bonds and critical in-plane compressive strain leads to rippling of stanene. It is demonstrated that application of shear strain reduces the range of stability of stanene. The existence of two energetically equivalent states of stanene is shown, and consequently, the possibility of the formation of domains separated by domain walls in the stanene is predicted.

20.
Materials (Basel) ; 15(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36013733

RESUMEN

Delocalized nonlinear vibrational modes (DNVMs) are exact solutions of the equations of motion, and therefore, DNVMs exist at any vibration amplitude and do not depend on interaction potentials. For the first time, modulation instability of four one-component three-dimensional DNVMs is studied in a single crystal of fcc copper with the use of methods of molecular dynamics. DNVMs frequencies, evolution of stresses, kinetic and potential energies, and heat capacity depending on the oscillation amplitudes are analyzed. It is found that all four DNVMs are characterized by a hard-type anharmonicity. Modulation instability of DNVMs results in a formation of chaotic discrete breathers (DBs) with frequency above the upper edge of the phonon spectrum of the crystal. The lifetime of chaotic DBs is found to be in the range of 30-100 ps. At low-oscillation frequencies, longer-lived DBs are formed. The growth of modulation instability leads to an increase in mechanical stresses and a decrease in the heat capacity of the crystal. The results obtained in this work enrich our understanding of the influence of the modulation instability of DNVMs on the properties of metals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA