Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 119: 693-708, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38677626

RESUMEN

Newborns exposed to birth asphyxia transiently experience deficient blood flow and a lack of oxygen, potentially inducing hypoxic-ischaemic encephalopathy and subsequent neurological damage. Immunomodulatory components in plasma may dampen these responses. Using caesarean-delivered pigs as a model, we hypothesized that dietary plasma supplementation improves brain outcomes in pigs exposed to birth asphyxia. Mild birth asphyxia was induced by temporary occlusion of the umbilical cord prior to caesarean delivery. Motor development was assessed in asphyxiated (ASP) and control (CON) piglets using neonatal arousal, physical activity and gait test parameters before euthanasia on Day 4. The ASP pigs exhibited increased plasma lactate at birth, deficient motor skills and increased glial fibrillary acidic protein levels in CSF and astrogliosis in the putamen. The expression of genes related to oxidative stress, inflammation and synaptic functions was transiently altered in the motor cortex and caudate nucleus. The number of apoptotic cells among CTIP2-positive neurons in the motor cortex and striatal medium spiny neurons was increased, and maturation of preoligodendrocytes in the internal capsule was delayed. Plasma supplementation improved gait performance in the beam test, attenuated neuronal apoptosis and affected gene expression related to neuroinflammation, neurotransmission and antioxidants (motor cortex, caudate). We present a new clinically relevant animal model of moderate birth asphyxia inducing structural and functional brain damage. The components in plasma that support brain repair remain to be identified but may represent a therapeutic potential for infants and animals after birth asphyxia.

2.
Cell Rep Med ; 5(1): 101348, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38151020

RESUMEN

The discovery of exercise-regulated circulatory factors has fueled interest in organ crosstalk, especially between skeletal muscle and adipose tissue, and the role in mediating beneficial effects of exercise. We studied the adipose tissue transcriptome in men and women with normal glucose tolerance or type 2 diabetes following an acute exercise bout, revealing substantial exercise- and time-dependent changes, with sustained increase in inflammatory genes in type 2 diabetes. We identify oncostatin-M as one of the most upregulated adipose-tissue-secreted factors post-exercise. In cultured human adipocytes, oncostatin-M enhances MAPK signaling and regulates lipolysis. Oncostatin-M expression arises predominantly from adipose tissue immune cell fractions, while the corresponding receptors are expressed in adipocytes. Oncostatin-M expression increases in cultured human Thp1 macrophages following exercise-like stimuli. Our results suggest that immune cells, via secreted factors such as oncostatin-M, mediate a crosstalk between skeletal muscle and adipose tissue during exercise to regulate adipocyte metabolism and adaptation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Femenino , Humanos , Masculino , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Lipólisis
3.
BMC Cancer ; 23(1): 1136, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993804

RESUMEN

BACKGROUND: The lactate receptor GPR81 contributes to cancer development through unclear mechanisms. Here, we investigate the roles of GPR81 in three-dimensional (3D) and in vivo growth of breast cancer cells and study the molecular mechanisms involved. METHODS: GPR81 was stably knocked down (KD) in MCF-7 human breast cancer cells which were subjected to RNA-seq analysis, 3D growth, in situ- and immunofluorescence analyses, and cell viability- and motility assays, combined with KD of key GPR81-regulated genes. Key findings were additionally studied in other breast cancer cell lines and in mammary epithelial cells. RESULTS: GPR81 was upregulated in multiple human cancer types and further upregulated by extracellular lactate and 3D growth in breast cancer spheroids. GPR81 KD increased spheroid necrosis, reduced invasion and in vivo tumor growth, and altered expression of genes related to GO/KEGG terms extracellular matrix, cell adhesion, and Notch signaling. Single cell in situ analysis of MCF-7 cells revealed that several GPR81-regulated genes were upregulated in the same cell clusters. Notch signaling, particularly the Notch ligand Delta-like-4 (DLL4), was strikingly downregulated upon GPR81 KD, and DLL4 KD elicited spheroid necrosis and inhibited invasion in a manner similar to GPR81 KD. CONCLUSIONS: GPR81 supports breast cancer aggressiveness, and in MCF-7 cells, this occurs at least in part via DLL4. Our findings reveal a new GPR81-driven mechanism in breast cancer and substantiate GPR81 as a promising treatment target.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Ácido Láctico/metabolismo , Ligandos , Transducción de Señal , Necrosis , Receptor Notch1/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
4.
Mol Metab ; 74: 101757, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37348738

RESUMEN

OBJECTIVE: Free fatty acid receptor 1 (FFAR1) is highly expressed in enteroendocrine cells of the small intestine and pancreatic beta cells, where FFAR1 agonists function as GLP-1 and insulin secretagogues, respectively. Most efficacious are so-called second-generation synthetic agonists such as AM5262, which, in contrast to endogenous long-chain fatty acids are able to signal through both IP3/Ca2+ and cAMP pathways. Whereas IP3 signaling is to be expected for the mainly Gq-coupled FFAR1, the mechanism behind FFAR1-induced cAMP accumulation remains unclear, although originally proposed to be Gs mediated. METHODS AND RESULTS: When stimulated with AM5262, we observe that FFAR1 can activate the majority of the Gα proteins, except - surprisingly - members of the Gs family. AM5262-induced FFAR1-mediated transcriptional activation through cAMP response element (CREB) was blocked by the specific Gq inhibitor, YM253890. Furthermore, in Gq-deficient cells no CREB signal was observed unless Gq or G11 was reintroduced by transfection. By qPCR we determined that adenylate cyclase 2 (Adcy2) was highly expressed and enriched relative to the nine other Adcys in pro-glucagon expressing enteroendocrine cells. Co-transfection with ADCY2 increased the FFAR1-induced cAMP response 4-5-fold in WT HEK293 cells, an effect fully inhibited by YM253890. Moreover, co-transfection with ADCY2 had no effect in Gq-deficient cells without reintroduction of either Gq or G11. Importantly, although both AM5262/FFAR1 and isoproterenol/ß2 adrenergic receptor (ß2AR) induced cAMP production was lost in Gs-deficient cells, only the ß2AR response was rescued by Gs transfection, whereas co-transfection with ADCY2 was required to rescue the FFAR1 cAMP response. In situ hybridization demonstrated a high degree of co-expression of ADCY2 and FFAR1 in enteroendocrine cells throughout the intestine. Finally, in the enteroendocrine STC-1 and GLUTag cell lines AM5262-induced cAMP accumulation and GLP-1 secretion were both blocked by YM253890. CONCLUSIONS: Our results show that Gq signaling is responsible not only for the IP3/Ca2+ but also the cAMP response, which together are required for the highly efficacious hormone secretion induced by second-generation FFAR1 agonists - and that ADCY2 presumably mediates the Gq-driven cAMP response.


Asunto(s)
Adenilil Ciclasas , Ácidos Grasos no Esterificados , Humanos , Células HEK293 , Receptores Acoplados a Proteínas G/metabolismo , Péptido 1 Similar al Glucagón/metabolismo
5.
J Endocr Soc ; 7(6): bvad057, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37200849

RESUMEN

Context: Metabolic disorders such as obesity represent a major health challenge. Obesity alone has reached epidemic proportions, with at least 2.8 million people worldwide dying annually from diseases caused by overweight or obesity. The brain-metabolic axis is central to maintain homeostasis under metabolic stress via an intricate signaling network of hormones. Protein interacting with C kinase 1 (PICK1) is important for the biogenesis of various secretory vesicles, and we have previously shown that PICK1-deficient mice have impaired secretion of insulin and growth hormone. Objective: The aim was to investigate how global PICK1-deficient mice respond to high-fat diet (HFD) and assess its role in insulin secretion in diet-induced obesity. Methods: We characterized the metabolic phenotype through assessment of body weight, composition, glucose tolerance, islet morphology insulin secretion in vivo, and glucose-stimulated insulin secretion ex vivo. Results: PICK1-deficient mice displayed similar weight gain and body composition as wild-type (WT) mice following HFD. While HFD impaired glucose tolerance of WT mice, PICK1-deficient mice were resistant to further deterioration of their glucose tolerance compared with already glucose-impaired chow-fed PICK1-deficient mice. Surprisingly, mice with ß-cell-specific knockdown of PICK1 showed impaired glucose tolerance both on chow and HFD similar to WT mice. Conclusion: Our findings support the importance of PICK1 in overall hormone regulation. However, importantly, this effect is independent of the PICK1 expression in the ß-cell, whereby global PICK1-deficient mice resist further deterioration of their glucose tolerance following diet-induced obesity.

6.
Cell Rep ; 42(5): 112466, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37148870

RESUMEN

Glucagon-like peptide-1 receptor (GLP-1R) agonists promote nicotine avoidance. Here, we show that the crosstalk between GLP-1 and nicotine extends beyond effects on nicotine self-administration and can be exploited pharmacologically to amplify the anti-obesity effects of both signals. Accordingly, combined treatment with nicotine and the GLP-1R agonist, liraglutide, inhibits food intake and increases energy expenditure to lower body weight in obese mice. Co-treatment with nicotine and liraglutide gives rise to neuronal activity in multiple brain regions, and we demonstrate that GLP-1R agonism increases excitability of hypothalamic proopiomelanocortin (POMC) neurons and dopaminergic neurons in the ventral tegmental area (VTA). Further, using a genetically encoded dopamine sensor, we reveal that liraglutide suppresses nicotine-induced dopamine release in the nucleus accumbens in freely behaving mice. These data support the pursuit of GLP-1R-based therapies for nicotine dependence and encourage further evaluation of combined treatment with GLP-1R agonists and nicotinic receptor agonists for weight loss.


Asunto(s)
Péptido 1 Similar al Glucagón , Liraglutida , Ratones , Animales , Péptido 1 Similar al Glucagón/farmacología , Liraglutida/farmacología , Nicotina/farmacología , Dopamina , Obesidad/tratamiento farmacológico , Obesidad/metabolismo
7.
Nat Metab ; 5(4): 677-698, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37055619

RESUMEN

Lactate is a circulating metabolite and a signalling molecule with pleiotropic physiological effects. Studies suggest that lactate modulates energy balance by lowering food intake, inducing adipose browning and increasing whole-body thermogenesis. Yet, like many other metabolites, lactate is often commercially produced as a counterion-bound salt and typically administered in vivo through hypertonic aqueous solutions of sodium L-lactate. Most studies have not controlled for injection osmolarity and the co-injected sodium ions. Here, we show that the anorectic and thermogenic effects of exogenous sodium L-lactate in male mice are confounded by the hypertonicity of the injected solutions. Our data reveal that this is in contrast to the antiobesity effect of orally administered disodium succinate, which is uncoupled from these confounders. Further, our studies with other counterions indicate that counterions can have confounding effects beyond lactate pharmacology. Together, these findings underscore the importance of controlling for osmotic load and counterions in metabolite research.


Asunto(s)
Depresores del Apetito , Ratones , Masculino , Animales , Depresores del Apetito/farmacología , Ácido Láctico , Termogénesis/fisiología , Sodio , Concentración Osmolar
8.
Am J Physiol Endocrinol Metab ; 324(4): E289-E298, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36812387

RESUMEN

Succinate is released by skeletal muscle during exercise and activates SUCNR1/GPR91. Signaling of SUCNR1 is involved in metabolite-sensing paracrine communication in skeletal muscle during exercise. However, the specific cell types responding to succinate and the directionality of communication are unclear. We aim to characterize the expression of SUCNR1 in human skeletal muscle. De novo analysis of transcriptomic datasets demonstrated that SUCNR1 mRNA is expressed in immune, adipose, and liver tissues, but scarce in skeletal muscle. In human tissues, SUCNR1 mRNA was associated with macrophage markers. Single-cell RNA sequencing and fluorescent RNAscope demonstrated that in human skeletal muscle, SUCNR1 mRNA is not expressed in muscle fibers but coincided with macrophage populations. Human M2-polarized macrophages exhibit high levels of SUCNR1 mRNA and stimulation with selective agonists of SUCNR1 triggered Gq- and Gi-coupled signaling. Primary human skeletal muscle cells were unresponsive to SUCNR1 agonists. In conclusion, SUCNR1 is not expressed in muscle cells and its role in the adaptive response of skeletal muscle to exercise is most likely mediated via paracrine mechanisms involving M2-like macrophages within the muscle.NEW & NOTEWORTHY Macrophages but not skeletal muscle cells respond to extracellular succinate via SUCNR1/GPR91.


Asunto(s)
Receptores Acoplados a Proteínas G , Ácido Succínico , Humanos , Músculos/metabolismo , Obesidad/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Ácido Succínico/metabolismo
9.
Int J Cancer ; 152(6): 1210-1225, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36408933

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive malignancy with minimal treatment options and a global rise in prevalence. PDAC is characterized by frequent driver mutations including KRAS and TP53 (p53), and a dense, acidic tumor microenvironment (TME). The relation between genotype and TME in PDAC development is unknown. Strikingly, when wild type (WT) Panc02 PDAC cells were adapted to growth in an acidic TME and returned to normal pH to mimic invasive cells escaping acidic regions, they displayed a strong increase of aggressive traits such as increased growth in 3-dimensional (3D) culture, adhesion-independent colony formation and invasive outgrowth. This pattern of acidosis-induced aggressiveness was observed in 3D spheroid culture as well as upon organotypic growth in matrigel, collagen-I and combination thereof, mimicking early and later stages of PDAC development. Acid-adaptation-induced gain of cancerous traits was further increased by p53 knockout (KO), but only in specific extracellular matrix (ECM) compositions. Akt- and Transforming growth factor-ß (TGFß) signaling, as well as expression of the Na+ /H+ exchanger NHE1, were increased by acid adaptation. Whereas Akt inhibition decreased spheroid growth regardless of treatment and genotype, stimulation with TGFßI increased growth of WT control spheroids, and inhibition of TGFß signaling tended to limit growth under acidic conditions only. Our results indicate that a complex crosstalk between tumor acidosis, ECM composition and genotype contributes to PDAC development. The findings may guide future strategies for acidosis-targeted therapies.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral , Proteína p53 Supresora de Tumor/genética , Neoplasias Pancreáticas
10.
iScience ; 25(12): 105683, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36561890

RESUMEN

Obesity and diabetes are associated with inflammation and altered plasma levels of several metabolites, which may be involved in disease progression. Some metabolites can activate G protein-coupled receptors (GPCRs) expressed on immune cells where they can modulate metabolic inflammation. Here, we find that 3-hydroxydecanoate is enriched in the circulation of obese individuals with type 2 diabetes (T2D) compared with nondiabetic controls. Administration of 3-hydroxydecanoate to mice promotes immune cell recruitment to adipose tissue, which was associated with adipose inflammation and increased fasting insulin levels. Furthermore, we demonstrate that 3-hydroxydecanoate stimulates migration of primary human and mouse neutrophils, but not monocytes, through GPR84 and Gαi signaling in vitro. Our findings indicate that 3-hydroxydecanoate is a T2D-associated metabolite that increases inflammatory responses and may contribute to the chronic inflammation observed in diabetes.

11.
Acta Neuropathol Commun ; 10(1): 113, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35974377

RESUMEN

Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease characterized by the accumulation of aggregated amyloid beta (Aß) and hyperphosphorylated tau along with a slow decline in cognitive functions. Unlike advanced AD, the initial steps of AD pathophysiology have been poorly investigated, partially due to limited availability of animal models focused on the early, plaque-free stages of the disease. The aim of this study was to evaluate the early behavioral, anatomical and molecular alterations in wild-type rats following intracerebroventricular injections of human Aß oligomers (AßOs). Bioactive human AD and nondemented control brain tissue extracts were characterized using ELISA and proteomics approaches. Following a bilateral infusion, rats underwent behavioral testing, including the elevated plus maze, social recognition test, Morris water maze and Y-maze within 6 weeks postinjection. An analysis of brain structure was performed with manganese-enhanced MRI. Collected brain tissues were analyzed using stereology, immunohistochemistry, ELISA and qPCR. No sensorimotor deficits affecting motor performance on different maze tasks were observed, nor was spatial memory disturbed in AD rats. In contrast, a significant impairment of social memory became evident at 21 days postinjection. This deficit was associated with a significantly decreased volume of the lateral entorhinal cortex and a tendency toward a decrease in the total brain volume. Significant increase of cleaved caspase-3-positive cells, microglial activation and proinflammatory responses accompanied by altered expression of synaptic markers were observed in the hippocampus of AD rats with immunohistochemical and qPCR approaches at 6 weeks postinjection. Our data suggest that the social memory impairment observed in AßO-injected rats might be determined by neuroinflammatory responses and synaptopathy. An infusion of native oligomeric Aß in the rat brain represents a feasible tool to model early plaque-free events associated with AD.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Aprendizaje por Laberinto/fisiología , Enfermedades Neurodegenerativas/metabolismo , Placa Amiloide/metabolismo , Ratas
12.
Neuropeptides ; 94: 102261, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35704969

RESUMEN

Thyrotropin-releasing hormone (TRH) plays a central role in metabolic homeostasis, and single-cell sequencing has recently demonstrated that vagal sensory neurons in the nodose ganglion express thyrotropin-releasing hormone receptor 1 (TRHR1). Here, in situ hybridization validated the presence of TRHR1 in nodose ganglion (NG) neurons and immunohistochemistry showed that the receptor is expressed at the protein level. However, it has yet to be demonstrated whether TRHR1 is functionally active in NG neurons. Using NG explants transduced with a genetically encoded Ca2+ indicator (GECI), we show that TRH increases Ca2+ in a subset of NG neurons. TRH-induced Ca2+ transients were briefer compared to those induced by CCK-8, 2-Me-5-HT and ATP. Blocking Na+ channels with TTX or Na+ substitution did not affect the TRH-induced Ca2+ increase, but blocking Gq signaling with YM-254890 abolished the TRH-induced response. Field potential recordings from the vagus nerve in vitro showed an increase in response to TRH, suggesting that TRH signaling produces action potentials in NG neurons. These observations indicate that TRH activates a small group of NG neurons, involving Gq pathways, and we hypothesize that these neurons may play a role in gut-brain signaling.


Asunto(s)
Ganglio Nudoso , Hormona Liberadora de Tirotropina , Neuronas/metabolismo , Ganglio Nudoso/metabolismo , Receptores de Hormona Liberadora de Tirotropina/metabolismo , Hormona Liberadora de Tirotropina/metabolismo , Nervio Vago/metabolismo
13.
Mol Neurobiol ; 59(4): 2204-2218, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35064541

RESUMEN

Chorioamnionitis (CA) is a risk factor for preterm birth and is associated with neurodevelopmental delay and cognitive disorders. Prenatal inflammation-induced brain injury may resolve during the immediate postnatal period when rapid brain remodeling occurs. Cerebrospinal fluid (CSF) collected at birth may be a critical source of predictive biomarkers. Using pigs as a model of preterm infants exposed to CA, we hypothesized that prenatal lipopolysaccharide (LPS) exposure induces proteome changes in the CSF and brain at birth and postnatally. Fetal piglets (103 days gestation of full-term at 117 days) were administered intra-amniotic (IA) lipopolysaccharide (LPS) 3 days before preterm delivery by caesarian section. CSF and brain tissue were collected on postnatal Days 1 and 5 (P1 and P5). CSF and hippocampal proteins were profiled by LC-MS-based quantitative proteomics. Neuroinflammatory responses in the cerebral cortex, periventricular white matter and hippocampus were evaluated by immunohistochemistry, and gene expression was evaluated by qPCR. Pigs exposed to LPS in utero showed changes in CSF protein levels at birth but not at P5. Complement protein C3, hemopexin, vasoactive intestinal peptide, carboxypeptidase N subunit 2, ITIH1, and plasminogen expression were upregulated in the CSF, while proteins associated with axon growth and synaptic functions (FGFR1, BASP1, HSPD1, UBER2N, and RCN2), adhesion (talin1), and neuronal survival (Atox1) were downregulated. Microglia, but not astrocytes, were activated by LPS at P5 in the hippocampus but not in other brain regions. At this time, marginal increases in complement protein C3, LBP, HIF1a, Basp1, Minpp1, and FGFR1 transcription indicated hippocampal proinflammatory responses. In conclusion, few days exposure to endotoxin prenatally induce proteome changes in the CSF and brain at birth, but most changes resolve a few days later. The developing hippocampus has high neuronal plasticity in response to perinatal inflammation. Changes in CSF protein expression at birth may predict later structural brain damage in preterm infants exposed to variable types and durations of CA-related inflammation in utero.


Asunto(s)
Lesiones Encefálicas , Corioamnionitis , Nacimiento Prematuro , Animales , Encéfalo , Lesiones Encefálicas/complicaciones , Proteínas de Unión al Calcio , Corioamnionitis/inducido químicamente , Proteínas del Sistema Complemento/efectos adversos , Proteínas Transportadoras de Cobre , Endotoxinas/toxicidad , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Inflamación , Lipopolisacáridos/farmacología , Chaperonas Moleculares , Embarazo , Proteoma , Proteómica , Porcinos
14.
Diabetes Obes Metab ; 24(2): 268-280, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34658116

RESUMEN

Peripheral glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) are secreted from enteroendocrine cells, and their plasma concentrations increase in response to eating. While the satiating effect of gut-derived CCK on food-intake control is well documented, the effect of peripheral GLP-1 is less clear. There is evidence that native GLP-1 can inhibit food intake only in the fed state but not in the fasting state. We therefore hypothesized that other gut peptides released during a meal might influence the subsequent effect of endogenous GLP-1 and investigated whether CCK could do so. We found that intraperitoneal injection of CCK in food-restricted mice inhibited food intake during the first 30-minute segment of a 1-hour session of ad libitum chow intake and that mice compensated by increasing their intake during the second half of the session. Importantly, this compensatory behaviour was abolished by an intraperitoneal injection of GLP-1 administered following an intraperitoneal injection of CCK and prior to the 1-hour session. In vivo activation of the free fatty acid 1 (FFA1) receptor with orally administered TAK875 increased plasma CCK concentration and, consistent with the effect of exogenous CCK, we found that prior oral administration of TAK875 increased the eating inhibitory effect of peripherally administered GLP-1. To examine the role of the vagus nerve in this effect, we utilized a saporin-based lesioning procedure to selectively ablate the CCK receptor-expressing gastrointestinal vagal afferent neurones (VANs). We found that the combined anorectic effect of TAK875 and GLP-1 was significantly attenuated in the absence of CCK receptor expressing VANs. Taken together, our results indicate that endogenous CCK interacts with GLP-1 to promote satiation and that activation of the FFA1 receptor can initiate this interaction by stimulating the release of CCK.


Asunto(s)
Colecistoquinina , Péptido 1 Similar al Glucagón , Animales , Ingestión de Alimentos , Humanos , Ratones , Receptores de Colecistoquinina , Saciedad/fisiología , Nervio Vago/fisiología
15.
Cell ; 184(13): 3502-3518.e33, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34048700

RESUMEN

Thermogenic adipocytes possess a therapeutically appealing, energy-expending capacity, which is canonically cold-induced by ligand-dependent activation of ß-adrenergic G protein-coupled receptors (GPCRs). Here, we uncover an alternate paradigm of GPCR-mediated adipose thermogenesis through the constitutively active receptor, GPR3. We show that the N terminus of GPR3 confers intrinsic signaling activity, resulting in continuous Gs-coupling and cAMP production without an exogenous ligand. Thus, transcriptional induction of Gpr3 represents the regulatory parallel to ligand-binding of conventional GPCRs. Consequently, increasing Gpr3 expression in thermogenic adipocytes is alone sufficient to drive energy expenditure and counteract metabolic disease in mice. Gpr3 transcription is cold-stimulated by a lipolytic signal, and dietary fat potentiates GPR3-dependent thermogenesis to amplify the response to caloric excess. Moreover, we find GPR3 to be an essential, adrenergic-independent regulator of human brown adipocytes. Taken together, our findings reveal a noncanonical mechanism of GPCR control and thermogenic activation through the lipolysis-induced expression of constitutively active GPR3.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Receptor de Androstano Constitutivo/metabolismo , Lipólisis , Receptores Acoplados a Proteínas G/metabolismo , Termogénesis , Adipocitos/metabolismo , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Frío , Grasas de la Dieta/farmacología , Humanos , Ratones Endogámicos C57BL , Fenotipo , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Sistema Nervioso Simpático/metabolismo , Transcripción Genética
16.
FASEB J ; 34(11): 15480-15491, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32969079

RESUMEN

Thyroid hormones are important for homeostatic control of energy metabolism and body temperature. Although skeletal muscle is considered a key site for thyroid action, the contribution of thyroid hormone receptor signaling in muscle to whole-body energy metabolism and body temperature has not been resolved. Here, we show that T3-induced increase in energy expenditure requires thyroid hormone receptor alpha 1 (TRα1 ) in skeletal muscle, but that T3-mediated elevation in body temperature is achieved in the absence of muscle-TRα1 . In slow-twitch soleus muscle, loss-of-function of TRα1 (TRαHSACre ) alters the fiber-type composition toward a more oxidative phenotype. The change in fiber-type composition, however, does not influence the running capacity or motivation to run. RNA-sequencing of soleus muscle from WT mice and TRαHSACre mice revealed differentiated transcriptional regulation of genes associated with muscle thermogenesis, such as sarcolipin and UCP3, providing molecular clues pertaining to the mechanistic underpinnings of TRα1 -linked control of whole-body metabolic rate. Together, this work establishes a fundamental role for skeletal muscle in T3-stimulated increase in whole-body energy expenditure.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Fibras Musculares de Contracción Rápida/fisiología , Fibras Musculares de Contracción Lenta/fisiología , Músculo Esquelético/fisiología , Receptores alfa de Hormona Tiroidea/fisiología , Hormonas Tiroideas/farmacología , Animales , Masculino , Ratones , Ratones Noqueados , Fibras Musculares de Contracción Rápida/citología , Fibras Musculares de Contracción Rápida/efectos de los fármacos , Fibras Musculares de Contracción Lenta/citología , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Condicionamiento Físico Animal , Transcriptoma
17.
ACS Chem Neurosci ; 11(9): 1270-1282, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32283014

RESUMEN

Vascular endothelial growth factor B (VEGFB) is a pleiotropic trophic factor, which in contrast to the closely related VEGFA is known to have a limited effect on angiogenesis. VEGFB improves survival in various tissues including the nervous system, where the effect was observed mainly for peripheral neurons. The neurotrophic effect of VEGFB on central nervous system neurons has been less investigated. Here we demonstrated that VEGFB promotes neurite outgrowth from primary cerebellar granule, hippocampal, and retinal neurons in vitro. VEGFB protected hippocampal and retinal neurons from both oxidative stress and glutamate-induced neuronal death. The VEGF receptor 1 (VEGFR1) is required for VEGFB-induced neurotrophic and neuroprotective effects. Using a structure-based approach, we designed short peptides, termed Vefin1-7, mimicking the binding interface of VEGFB to VEGFR1. Vefins were analyzed for their secondary structure and binding to VEGF receptors and compared with previously described peptides derived from VEGFA, another ligand of VEGFR1. We show that Vefins have neurotrophic and neuroprotective effects on primary hippocampal, cerebellar granule, and retinal neurons in vitro with potencies comparable to VEGFB. Similar to VEGFB, Vefins were not mitogenic for MCF-7 cancer cells. Furthermore, one of the peptides, Vefin7, even dose-dependently inhibited the proliferation of MCF-7 cells in vitro. Unraveling the neurotrophic and neuroprotective potentials of VEGFB, the only nonangiogenic factor of the VEGF family, is promising for the development of neuroprotective peptide-based therapies.


Asunto(s)
Factor B de Crecimiento Endotelial Vascular , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Sistema Nervioso Central , Neuronas , Péptidos/farmacología
18.
JCI Insight ; 5(4)2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-31999645

RESUMEN

Cell therapy raises hopes high for better treatment of brain disorders. However, the majority of transplanted cells often die soon after transplantation, and those that survive initially continue to die in the subacute phase, diminishing the impact of transplantations. In this study, we genetically modified transplanted human neural stem cells (hNSCs), from 2 distant embryonic stem cell lines (H9 and RC17), to express 1 of 4 prosurvival factors - Hif1a, Akt1, Bcl-2, or Bcl-xl - and studied how these modifications improve short- and long-term survival of transplanted hNSCs. All genetic modifications dramatically increased survival of the transplanted hNSCs. Importantly, 3 out of 4 modifications also enhanced the exit of hNSCs from the cell cycle, thus avoiding aberrant growth of the transplants. Bcl-xl expression provided the strongest protection of transplanted cells, reducing both immediate and delayed cell death, and stimulated hNSC differentiation toward neuronal and oligodendroglial lineages. By designing hNSCs with drug-controlled expression of Bcl-xl, we demonstrated that short-term expression of a prosurvival factor can ensure the long-term survival of transplanted cells. Importantly, transplantation of Bcl-xl-expressing hNSCs into mice suffering from stroke improved behavioral outcome and recovery of motor activity in mice.


Asunto(s)
Diferenciación Celular , Supervivencia Celular/genética , Células-Madre Neurales/citología , Trasplante de Células Madre , Accidente Cerebrovascular/patología , Animales , Ciclo Celular , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Actividad Motora , Accidente Cerebrovascular/metabolismo , Resultado del Tratamiento , Proteína bcl-X/genética
19.
Neurobiol Aging ; 81: 88-101, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31255922

RESUMEN

Neurodegenerative disorders such as Alzheimer's disease (AD) are characterized by the irreversible neuronal loss and memory impairment, and current treatments are merely symptomatic. Erythropoietin (EPO) has been shown to possess neurotrophic, neuroprotective, anti-inflammatory, and memory-enhancing effects, which could be therapeutically beneficial in the different aspects of AD. However, the hematopoietic effect of EPO has hampered its potential as a neuroprotective and procognitive agent. In this study, we characterized a novel small peptide, NL100, derived from a conserved C-helix region of EPO. NL100 was shown to bind to the EPO receptor, induce neuritogenesis, and protect hippocampal neurons from oxidative- and Aß25-35-induced neurodegeneration in vitro. Importantly, long-term NL100 treatment did not induce hematopoiesis, overcoming this challenge associated with EPO. Memory-enhancing effects were demonstrated after NL100 treatment in social recognition test for short-term memory, in both healthy rats and rats challenged centrally with Aß25-35 peptide, and in the Morris water maze test for spatial memory. Moreover, NL100 was shown to reverse Aß25-35-induced hippocampal degeneration and gliosis as well as pilocarpine-induced suppression of long-term potentiation in rats. In conclusion, NL100 is a novel EPO-derived nonhematopoietic peptide with neuroprotective and memory-enhancing effects and could therefore be a potential candidate for the development of new treatments for neurodegenerative disorders and dementia.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Demencia/tratamiento farmacológico , Demencia/etiología , Eritropoyetina , Potenciación a Largo Plazo/efectos de los fármacos , Memoria/efectos de los fármacos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/etiología , Fármacos Neuroprotectores , Péptidos/farmacología , Péptidos/uso terapéutico , Animales , Eritropoyetina/química , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones Endogámicos BALB C , Proyección Neuronal/efectos de los fármacos , Ratas Sprague-Dawley , Ratas Wistar
20.
Theranostics ; 8(14): 3977-3990, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30083275

RESUMEN

Understanding the mechanisms of neurodegeneration is crucial for development of therapies to treat neurological disorders. S100 proteins are extensively expressed in the injured brain but S100's role and signalling in neural cells remain elusive. We recently demonstrated that the S100A4 protein protects neurons in brain injury and designed S100A4-derived peptides mimicking its beneficial effects. Here we show that neuroprotection by S100A4 involves the growth factor family receptor ErbB4 and its ligand Neuregulin 1 (NRG), key regulators of neuronal plasticity and implicated in multiple brain pathologies. The neuroprotective effect of S100A4 depends on ErbB4 expression and the ErbB4 signalling partners ErbB2/Akt, and is reduced by functional blockade of NRG/ErbB4 in cell models of neurodegeneration. We also detect binding of S100A4 with ErbB1 (EGFR) and ErbB3. S100A4-derived peptides interact with, and signal through ErbB, are neuroprotective in primary and immortalized dopaminergic neurons, and do not affect cell proliferation/motility - features which make them promising as potential neuroprotectants. Our data suggest that the S100-ErbB axis may be an important mechanism regulating neuronal survival and plasticity.


Asunto(s)
Neuronas/fisiología , Receptor ErbB-4/metabolismo , Proteína de Unión al Calcio S100A4/metabolismo , Transducción de Señal , Animales , Supervivencia Celular , Neurregulina-1/metabolismo , Plasticidad Neuronal , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA