Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(17): 11764-11772, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38625675

RESUMEN

Direct imaging of single molecules at nanostructured interfaces is a grand challenge with potential to enable new, precise material architectures and technologies. Of particular interest are the structural morphology and spectroscopic signatures of the adsorbed molecule, where modern probes are only now being developed with the necessary spatial and energetic resolution to provide detailed information at the molecule-surface interface. Here, we directly characterize the adsorption of individual m-terphenyl isocyanide ligands on a reconstructed Au(111) surface through scanning tunneling microscopy and inelastic electron tunneling spectroscopy. The site-dependent steric pressure of the various surface features alters the vibrational fingerprints of the m-terphenyl isocyanides, which are characterized with single-molecule precision through joint experimental and theoretical approaches. This study provides molecular-level insights into the steric-pressure-enabled surface binding selectivity as well as its effect on the chemical properties of individual surface-binding ligands.

2.
J Chem Phys ; 155(2): 024503, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34266271

RESUMEN

The phase stability and equilibria of carbon dioxide are investigated from 125-325 K and 1-10 000 atm using extensive molecular dynamics (MD) simulations and the Two-Phase Thermodynamics (2PT) method. We devise a direct approach for calculating phase diagrams, in general, by considering the separate chemical potentials of the isolated phase at specific points on the P-T diagram. The unique ability of 2PT to accurately and efficiently approximate the entropy and Gibbs energy of liquids allows for assignment of phase boundaries from relatively short (∼100 ps) MD simulations. We validate our approach by calculating the critical properties of the flexible elementary physical model 2, showing good agreement with previous results. We show, however, that the incorrect description of the short-range Pauli force and the lack of molecular charge polarization lead to deviations from experiments at high pressures. We, thus, develop a many-body, fluctuating charge model for CO2, termed CO2-Fq, from high level quantum mechanics (QM) calculations that accurately capture the condensed phase vibrational properties of the solid (including the Fermi resonance at 1378 cm-1) as well as the diffusional properties of the liquid, leading to overall excellent agreement with experiments over the entire phase diagram. This work provides an efficient computational approach for determining phase diagrams of arbitrary systems and underscores the critical role of QM charge reorganization physics in molecular phase stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...