RESUMEN
Bacterial cellulose nanofiber (BCNF) with high thermal stability produced by an ecofriendly process has emerged as a promising solution to realize safe and sustainable materials in the large-scale battery. However, an understanding of the actual thermal behavior of the BCNF in the full-cell battery has been lacking, and the yield is still limited for commercialization. Here, we report the entire process of BCNF production and battery manufacture. We systematically constructed a strain with the highest yield (31.5%) by increasing metabolic flux and improved safety by introducing a Lewis base to overcome thermochemical degradation in the battery. This report will open ways of exploiting the BCNF as a "single-layer" separator, a good alternative to the existing chemical-derived one, and thus can greatly contribute to solving the environmental and safety issues.
RESUMEN
Modified embedded-atom method (MEAM) interatomic potentials for the Ga-N and In-N binary and Ga-In-N ternary systems have been developed based on the previously developed potentials for Ga, In and N. The potentials can describe various physical properties (structural, elastic and defect properties) of both zinc-blende and wurtzite-type GaN and InN as well as those of constituent elements, in good agreement with experimental data or high-level calculations. The potential can also describe the structural behavior of Ga(1-x)In(x)N ternary nitrides reasonably well. The applicability of the potentials to atomistic investigations of atomic/nanoscale structural evolution in Ga(1-x)In(x)N multi-component nitrides during the deposition of constituent element atoms is discussed.