RESUMEN
The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral structural protein that is abundant in the circulation of infected individuals. Previous published studies reported controversial data about the role of the N protein in the activation of the complement system. It was suggested that the N protein directly interacts with mannose-binding lectin-associated serine protease-2 (MASP-2) and stimulates lectin pathway overactivation/activity. In order to check these data and to reveal the mechanism of activation, we examined the effect of the N protein on lectin pathway activation. We found that the N protein does not bind to MASP-2 and MASP-1 and it does not stimulate lectin pathway activity in normal human serum. Furthermore, the N protein does not facilitate the activation of zymogen MASP-2, which is MASP-1 dependent. Moreover, the N protein does not boost the enzymatic activity of MASP-2 either on synthetic or on protein substrates. In some of our experiments, we observed that MASP-2 digests the N protein. However, it is questionable, whether this activity is biologically relevant. Although surface-bound N protein did not activate the lectin pathway, it did trigger the alternative pathway in 10% human serum. Additionally, we detected some classical pathway activation by the N protein. Nevertheless, we demonstrated that this activation was induced by the bound nucleic acid, rather than by the N protein itself.
Asunto(s)
Lectina de Unión a Manosa de la Vía del Complemento , Proteínas de la Nucleocápside de Coronavirus , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , SARS-CoV-2 , Humanos , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , SARS-CoV-2/metabolismo , Proteínas de la Nucleocápside de Coronavirus/metabolismo , COVID-19/virología , COVID-19/metabolismo , COVID-19/inmunología , Fosfoproteínas/metabolismo , Unión Proteica , Activación de ComplementoRESUMEN
Both hypoxia and the complement lectin pathway (CLP) are involved in atherosclerosis and atherosclerosis-related stroke and acute myocardial infarction (AMI). We have previously shown that mannose-binding lectin-associated serine protease-1 (MASP-1), the most abundant enzyme of CLP, induces an inflammatory phenotype of endothelial cells (ECs) by cleaving protease activated receptors (PARs). In the absence of data, we aimed to investigate whether hypoxia and MASP-1 interact at the level of ECs, to better understand their role in atherosclerosis-related diseases. Hypoxia attenuated the wound healing ability of ECs, increased ICAM-1 and decreased ICAM-2 expression and upregulated PAR2 gene expression. Hypoxia and MASP-1 increased GROα and IL-8 production, and endothelial permeability without potentiating each other's effects, whereas they cooperatively disrupted vascular network integrity, activated the Ca2+, CREB and NFκB signaling pathways, and upregulated the expression of E-selectin, a crucial adhesion molecule in neutrophil homing. VCAM-1 expression was not influenced either by hypoxia, or by MASP-1. In summary, hypoxia potentiates the effect of MASP-1 on ECs, at least partially by increasing PAR expression, resulting in interaction at several levels, which may altogether exacerbate stroke and AMI progression. Our findings suggest that MASP-1 is a potential drug target in the acute phase of atherosclerosis-related diseases.
Asunto(s)
Aterosclerosis , Células Endoteliales , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Humanos , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Células Endoteliales/metabolismo , Transducción de Señal , Hipoxia de la Célula , FN-kappa B/metabolismo , Receptor PAR-2/metabolismo , Receptor PAR-2/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Selectina E/metabolismo , Selectina E/genética , Interleucina-8/metabolismoRESUMEN
Endothelial wound-healing processes are fundamental for the maintenance and restoration of the circulatory system and are greatly affected by the factors present in the blood. We have previously shown that the complement protein mannan-binding lectin-associated serine protease-1 (MASP-1) induces the proinflammatory activation of endothelial cells and is able to cooperate with other proinflammatory activators. Our aim was to investigate the combined effect of mechanical wounding and MASP-1 on endothelial cells. Transcriptomic analysis showed that MASP-1 alters the expression of wound-healing-related and angiogenesis-related genes. Both wounding and MASP-1 induced Ca2+ mobilization when applied individually. However, MASP-1-induced Ca2+ mobilization was inhibited when the treatment was preceded by wounding. Mechanical wounding promoted CREB phosphorylation, and the presence of MASP-1 enhanced this effect. Wounding induced ICAM-1 and VCAM-1 expression on endothelial cells, and MASP-1 pretreatment further increased VCAM-1 levels. MASP-1 played a role in the subsequent stages of angiogenesis, facilitating the breakdown of the endothelial capillary network on Matrigel®. Our findings extend our general understanding of endothelial wound healing and highlight the importance of complement MASP-1 activation in wound-healing processes.
Asunto(s)
Células Endoteliales , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Molécula 1 de Adhesión Celular Vascular , Cicatrización de Heridas , Proteínas del Sistema ComplementoRESUMEN
The complement system is the other major proteolytic cascade in the blood of vertebrates besides the coagulation-fibrinolytic system. Among the three main activation routes of complement, the lectin pathway (LP) has been discovered the latest, and it is still the subject of intense research. Mannose-binding lectin (MBL), other collectins, and ficolins are collectively termed as the pattern recognition molecules (PRMs) of the LP, and they are responsible for targeting LP activation to molecular patterns, e.g., on bacteria. MBL-associated serine proteases (MASPs) are the effectors, while MBL-associated proteins (MAps) have regulatory functions. Two serine protease components, MASP-1 and MASP-2, trigger the LP activation, while the third component, MASP-3, is involved in the function of the alternative pathway (AP) of complement. Besides their functions within the complement system, certain LP components have secondary ("moonlighting") functions, e.g., in embryonic development. They also contribute to blood coagulation, and some might have tumor suppressing roles. Uncontrolled complement activation can contribute to the progression of many diseases (e.g., stroke, kidney diseases, thrombotic complications, and COVID-19). In most cases, the lectin pathway has also been implicated. In this review, we summarize the history of the lectin pathway, introduce their components, describe its activation and regulation, its roles within the complement cascade, its connections to blood coagulation, and its direct cellular effects. Special emphasis is placed on disease connections and the non-canonical functions of LP components.
Asunto(s)
Lectinas , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Animales , Lectinas/metabolismo , Lectina de Unión a Manosa de la Vía del Complemento , Activación de Complemento , Ficolinas , Proteínas del Sistema Complemento , Péptido HidrolasasRESUMEN
Background: Haemostasis is a crucial process by which the body stops bleeding. It is achieved by the formation of a platelet plug, which is strengthened by formation of a fibrin mesh mediated by the coagulation cascade. In proinflammatory and prothrombotic conditions, multiple interactions of the complement system and the coagulation cascade are known to aggravate thromboinflammatory processes and increase the risk of arterial and venous thrombosis. Whether those interactions also play a relevant role during the physiological process of haemostasis is not yet completely understood. The aim of this study was to investigate the potential role of complement components and activation during the haemostatic response to mechanical vessel injury. Methods: We used a microvascular bleeding model that simulates a blood vessel, featuring human endothelial cells, perfusion with fresh human whole blood, and an inducible mechanical injury to the vessel. We studied the effects of complement inhibitors against components of the lectin (MASP-1, MASP-2), classical (C1s), alternative (FD) and common pathways (C3, C5), as well as a novel triple fusion inhibitor of all three complement pathways (TriFu). Effects on clot formation were analysed by recording of fibrin deposition and the platelet activation marker CD62P at the injury site in real time using a confocal microscope. Results: With the inhibitors targeting MASP-2 or C1s, no significant reduction of fibrin formation was observed, while platelet activation was significantly reduced in the presence of the FD inhibitor. Both common pathway inhibitors targeting C3 or C5, respectively, were associated with a substantial reduction of fibrin formation, and platelet activation was also reduced in the presence of the C3 inhibitor. Triple inhibition of all three activation pathways at the C3-convertase level by TriFu reduced both fibrin formation and platelet activation. When several complement inhibitors were directly compared in two individual donors, TriFu and the inhibitors of MASP-1 and C3 had the strongest effects on clot formation. Conclusion: The observed impact of complement inhibition on reducing fibrin clot formation and platelet activation suggests a role of the complement system in haemostasis, with modulators of complement initiation, amplification or effector functions showing distinct profiles. While the interactions between complement and coagulation might have evolved to support haemostasis and protect against bleeding in case of vessel injury, they can turn harmful in pathological conditions when aggravating thromboinflammation and promoting thrombosis.
RESUMEN
Complement factor D (FD) is a serine protease present predominantly in the active form in circulation. It is synthesized as a zymogen (pro-FD), but it is continuously converted to FD by circulating active MASP-3. FD is a unique, self-inhibited protease. It has an extremely low activity toward free factor B (FB), while it is a highly efficient enzyme toward FB complexed with C3b (C3bB). The structural basis of this phenomenon is known; however, the rate enhancement was not yet quantified. It has also been unknown whether pro-FD has any enzymatic activity. In this study, we aimed to measure the activity of human FD and pro-FD toward uncomplexed FB and C3bB in order to quantitatively characterize the substrate-induced activity enhancement and zymogenicity of FD. Pro-FD was stabilized in the proenzyme form by replacing Arg25 (precursor numbering) with Gln (pro-FD-R/Q). Activated MASP-1 and MASP-3 catalytic fragments were also included in the study for comparison. We found that the complex formation with C3b enhanced the cleavage rate of FB by FD approximately 20 million-fold. C3bB was also a better substrate for MASP-1, approximately 100-fold, than free FB, showing that binding to C3b renders the scissile Arg-Lys bond in FB to become more accessible for proteolysis. Though easily measurable, this cleavage by MASP-1 is not relevant physiologically. Our approach provides quantitative data for the two-step mechanism characterized by the enhanced susceptibility of FB for cleavage upon complex formation with C3b and the substrate-induced activity enhancement of FD upon its binding to C3bB. Earlier MASP-3 was also implicated as a potential FB activator; however, MASP-3 does not cleave C3bB (or FB) at an appreciable rate. Finally, pro-FD cleaves C3bB at a rate that could be physiologically significant. The zymogenicity of FD is approximately 800, i.e., the cleavage rate of C3bB by pro-FD-R/Q was found to be approximately 800-fold lower than that by FD. Moreover, pro-FD-R/Q at approximately 50-fold of the physiological FD concentration could restore half-maximal AP activity of FD-depleted human serum on zymosan. The observed zymogen activity of pro-FD might be relevant in MASP-3 deficiency cases or during therapeutic MASP-3 inhibition.
Asunto(s)
Factor D del Complemento , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Humanos , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Factor B del Complemento , Serina Endopeptidasas/metabolismo , Precursores EnzimáticosRESUMEN
Endothelial cells play an important role in sensing danger signals and regulating inflammation. Several factors are capable of inducing a proinflammatory response (e.g., LPS, histamine, IFNγ, and bradykinin), and these factors act simultaneously during the natural course of the inflammatory reaction. We have previously shown that the complement protein mannan-binding lectin-associated serine protease-1 (MASP-1) also induces a proinflammatory activation of the endothelial cells. Our aim was to investigate the possible cooperation between MASP-1 and other proinflammatory mediators when they are present in low doses. We used HUVECs and measured Ca2+ mobilization, IL-8, E-selectin, VCAM-1 expression, endothelial permeability, and mRNA levels of specific receptors. LPS pretreatment increased the expression of PAR2, a MASP-1 receptor, and furthermore, MASP-1 and LPS enhanced each other's effects in regulating IL-8, E-selectin, Ca2+ mobilization, and changes in permeability in a variety of ways. Cotreatment of MASP-1 and IFNγ increased the IL-8 expression of HUVECs. MASP-1 induced bradykinin and histamine receptor expression, and consequently, increased Ca2+ mobilization was found. Pretreatment with IFNγ enhanced MASP-1-induced Ca2+ mobilization. Our findings highlight that well-known proinflammatory mediators and MASP-1, even at low effective doses, can strongly synergize to enhance the inflammatory response of endothelial cells.
Asunto(s)
Células Endoteliales , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Humanos , Células Endoteliales/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Selectina E/genética , Bradiquinina/farmacología , Interleucina-8 , Lipopolisacáridos/farmacología , Proteínas del Sistema Complemento , Inflamación , Activación de ComplementoRESUMEN
Background: Complement lectin pathway components, in particular mannan-binding lectin (MBL) and MBL-associated serine proteases (MASPs) have been shown to interact with coagulation factors and contribute to clot formation. Here we investigated the role of MBL and MASP-1 in the haemostatic response following mechanical vessel injury in a human microfluidic bleeding model. Methods: We studied haemostasis in a microvascular bleeding model in the presence of human endothelial cells and human whole blood under flow conditions. We monitored incorporation of proteins into the clot with fluorescently labelled antibodies and studied their effects on clot formation, platelet activation, and bleeding time with specific inhibitors. Platelet activation was also studied by flow cytometry. Results: Upon vessel injury, MBL accumulated at the injury site in a well-defined wall-like structure. MBL showed partial colocalisation with fibrin, and strong colocalisation with von Willebrand factor and (activated) platelets. Flow cytometry ruled out direct binding of MBL to platelets, but confirmed a PAR4- and thrombin-dependent platelet-activating function of MASP-1. Inhibiting MBL during haemostasis reduced platelet activation, while inhibiting MASP-1 reduced platelet activation, fibrin deposition and prolonged bleeding time. Conclusion: We show in a microvascular human bleeding model that MBL and MASP-1 have important roles in the haemostatic response triggered by mechanical vessel injury: MBL recognises the injury site, while MASP-1 increases fibrin formation, platelet activation and shortens bleeding time. While the complement lectin pathway may be harmful in the context of pathological thrombosis, it appears to be beneficial during the physiological coagulation response by supporting the crucial haemostatic system.
Asunto(s)
Hemorragia , Hemostáticos , Lectina de Unión a Manosa , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Trombosis , Coagulación Sanguínea , Proteínas del Sistema Complemento/metabolismo , Células Endoteliales , Fibrina , Hemorragia/metabolismo , Humanos , Lectina de Unión a Manosa/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismoRESUMEN
Proteins destined for secretion - after removal of the signal sequence - often undergo further proteolytic processing by proprotein convertases (PCs). Prohormones are typically processed in the regulated secretory pathway, while most plasma proteins travel though the constitutive pathway. The complement system is a major proteolytic cascade in the blood, serving as a first line of defense against microbes and also contributing to the immune homeostasis. Several complement components, namely C3, C4, C5 and factor I (FI), are multi-chain proteins that are apparently processed by PCs intracellularly. Cleavage occurs at consecutive basic residues and probably also involves the action of carboxypeptidases. The most likely candidate for the intracellular processing of complement proteins is furin, however, because of the overlapping specificities of basic amino acid residue-specific proprotein convertases, other PCs might be involved. To our surprise, we have recently discovered that processing of another complement protein, mannan-binding lectin-associated serine protease-3 (MASP-3) occurs in the blood by PCSK6 (PACE4). A similar mechanism had been described for the membrane protease corin, which is also activated extracellularly by PCSK6. In this review we intend to point out that the proper functioning of the complement system intimately depends on the action of proprotein convertases. In addition to the non-enzymatic components (C3, C4, C5), two constitutively active complement proteases are directly activated by PCs either intracellularly (FI), or extracellularly (MASP-3), moreover indirectly, through the constitutive activation of pro-factor D by MASP-3, the activity of the alternative pathway also depends on a PC present in the blood.
Asunto(s)
Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Proproteína Convertasas , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Proproteína Convertasas/metabolismo , ProteolisisRESUMEN
MASP-1 and MASP-2 are key activator proteases of the complement lectin pathway. The first specific mannose-binding lectin-associated serine protease (MASP) inhibitors had been developed from the 14-amino-acid sunflower trypsin inhibitor (SFTI) peptide by phage display, yielding SFTI-based MASP inhibitors, SFMIs. Here, we present the crystal structure of the MASP-1/SFMI1 complex that we analyzed in comparison to other existing MASP-1/2 structures. Rigidified backbone structure has long been accepted as a structural prerequisite for peptide inhibitors of proteases. We found that a hydrophobic cluster organized around the P2 Thr residue is essential for the structural stability of wild-type SFTI. We also found that the same P2 Thr prevents binding of the rigid SFTI-like peptides to the substrate-binding cleft of both MASPs as the cleft is partially blocked by large gatekeeper enzyme loops. Directed evolution removed this obstacle by replacing the P2 Thr with a Ser, providing the SFMIs with high-degree structural plasticity, which proved to be essential for MASP inhibition. To gain more insight into the structural criteria for SFMI-based MASP-2 inhibition, we systematically modified MASP-2-specific SFMI2 by capping its two termini and by replacing its disulfide bridge with varying length thioether linkers. By doing so, we also aimed to generate a versatile scaffold that is resistant to reducing environment and has increased stability in exopeptidase-containing biological environments. We found that the reduction-resistant disulfide-substituted l-2,3-diaminopropionic acid (Dap) variant possessed near-native potency. As MASP-2 is involved in the life-threatening thrombosis in COVID-19 patients, our synthetic, selective MASP-2 inhibitors could be relevant coronavirus drug candidates.
Asunto(s)
Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Péptidos , Disulfuros , Humanos , Lectinas , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/antagonistas & inhibidores , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/química , Péptidos/química , Péptidos/farmacologíaRESUMEN
Ecotin is a homodimeric serine protease inhibitor produced by many commensal and pathogenic microbes. It functions as a virulence factor, enabling survival of various pathogens in the blood. The ecotin dimer binds two protease molecules, and each ecotin protomer has two protease-binding sites: site1 occupies the substrate-binding groove, whereas site2 engages a distinct secondary region. Owing to the twofold rotational symmetry within the ecotin dimer, sites 1 and 2 of a protomer bind to different protease molecules within the tetrameric complex. Escherichia coli ecotin inhibits trypsin-like, chymotrypsin-like, and elastase-like enzymes, including pancreatic proteases, leukocyte elastase, key enzymes of blood coagulation, the contact and complement systems, and other antimicrobial cascades. Here, we show that mannan-binding lectin-associated serine protease-1 (MASP-1) and MASP-2, essential activators of the complement lectin pathway, and MASP-3, an essential alternative pathway activator, are all inhibited by ecotin. We decipher in detail how the preorganization of site1 and site2 within the ecotin dimer contributes to the inhibition of each MASP enzyme. In addition, using mutated and monomeric ecotin variants, we show that site1, site2, and dimerization contribute to inhibition in a surprisingly target-dependent manner. We present the first ecotin:MASP-1 and ecotin:MASP-2 crystal structures, which provide additional insights and permit structural interpretation of the observed functional results. Importantly, we reveal that monomerization completely disables the MASP-2-inhibitory, MASP-3-inhibitory, and lectin pathway-inhibitory capacity of ecotin. These findings provide new opportunities to combat dangerous multidrug-resistant pathogens through development of compounds capable of blocking ecotin dimer formation.
Asunto(s)
Proteínas de Escherichia coli/química , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/química , Proteínas Periplasmáticas/química , Sitios de Unión , Lectina de Unión a Manosa de la Vía del Complemento , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lectinas/genética , Lectinas/metabolismo , Lectina de Unión a Manosa/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Periplasmáticas/metabolismo , Subunidades de ProteínaRESUMEN
The complement system is a first-line innate host immune defence against invading pathogens. It is activated via three pathways, termed Classical, Lectin and Alternative, which are mediated by antibodies, carbohydrate arrays or microbial liposaccharides, respectively. The three complement pathways converge in the formation of C3-convertase followed by the assembly of a lethal pore-like structure, the membrane attack complex (MAC), on the pathogen surface. We found that the infectious stage of the helminth parasite Fasciola hepatica, the newly excysted juvenile (NEJ), is resistant to the damaging effects of complement. Despite being coated with mannosylated proteins, the main initiator of the Lectin pathway, the mannose binding lectin (MBL), does not bind to the surface of live NEJ. In addition, we found that recombinantly expressed serine protease inhibitors secreted by NEJ (rFhSrp1 and rFhSrp2) selectively prevent activation of the complement via the Lectin pathway. Our experiments demonstrate that rFhSrp1 and rFhSrp2 inhibit native and recombinant MBL-associated serine proteases (MASPs), impairing the primary step that mediates C3b and C4b deposition on the NEJ surface. Indeed, immunofluorescence studies show that MBL, C3b, C4b or MAC are not deposited on the surface of NEJ incubated in normal human serum. Taken together, our findings uncover new means by which a helminth parasite prevents the activation of the Lectin complement pathway to become refractory to killing via this host response, in spite of presenting an assortment of glycans on their surface.
Asunto(s)
Proteínas del Sistema Complemento/inmunología , Fasciola hepatica/inmunología , Proteínas del Helminto/inmunología , Lectina de Unión a Manosa/inmunología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/inmunología , Animales , Proteínas del Helminto/metabolismo , Humanos , Inmunidad Innata/inmunología , Lectina de Unión a Manosa/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Serpinas/inmunología , Serpinas/metabolismoRESUMEN
Factor D (FD) is an essential element of the alternative pathway of the complement system, and it circulates predominantly in cleaved, activated form in the blood. In resting blood, mannose-binding lectin-associated serine protease 3 (MASP-3) is the exclusive activator of pro-FD. Similarly to FD, MASP-3 also circulates mainly in the active form. It was not clear, however, how zymogen MASP-3 is activated. To decipher its activation mechanism, we followed the cleavage of MASP-3 in human hirudin plasma. Our data suggest that neither lectin pathway proteases nor any protease controlled by C1-inhibitor are required for MASP-3 activation. However, EDTA and the general proprotein convertase inhibitor decanoyl-RVKR-chloromethylketone completely prevented activation of exogenous MASP-3 added to blood samples. In this study, we show that proprotein convertase subtilisin/kexin (PCSK) 5 and PCSK6 are able to activate MASP-3 in vitro. Unlike PCSK5, PCSK6 was detected in human serum and plasma, and previously PCSK6 had also been shown to activate corin in the circulation. In all, PCSK6 emerges as the MASP-3 activator in human blood. These findings clarify the very first step of the activation of the alternative pathway and also connect the complement and the proprotein convertase systems in the blood.
Asunto(s)
Vía Alternativa del Complemento/inmunología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/inmunología , Voluntarios Sanos , HumanosRESUMEN
Inter-α-inhibitor heavy chain 4 (ITIH4) is a poorly characterized plasma protein that is proteolytically processed in multiple pathological conditions. However, no biological function of ITIH4 has been identified. Here, we show that ITIH4 is cleaved by several human proteases within a protease-susceptible region, enabling ITIH4 to function as a protease inhibitor. This is exemplified by its inhibition of mannan-binding lectin-associated serine protease-1 (MASP-1), MASP-2, and plasma kallikrein, which are key proteases for intravascular host defense. Mechanistically, ITIH4 acts as bait that, upon cleavage, forms a noncovalent, inhibitory complex with the executing protease that depends on the ITIH4 von Willebrand factor A domain. ITIH4 inhibits the MASPs by sterically preventing larger protein substrates from accessing their active sites, which remain accessible and fully functional toward small substrates. Thus, we demonstrate that ITIH4 functions as a protease inhibitor by a previously undescribed inhibitory mechanism.
RESUMEN
C1-inhibitor (C1-INH) is an important regulator of the complement, coagulation, fibrinolytic and contact systems. The quantity of protease/C1-INH complexes in the blood is proportional to the level of the in vivo activation of these four cascade-like plasma enzyme systems. Parallel determination of C1-INH-containing activation complexes could be important to understand the regulatory role of C1-INH in diseases such as hereditary angioedema (HAE) due to C1-INH deficiency (C1-INH-HAE). We developed in-house ELISAs to measure the concentration of complexes of C1-INH formed with active proteases: C1r, C1s, MASP-1, MASP-2, plasma kallikrein, factor XIIa, factor XIa, and thrombin, as well as to determine total and functionally active C1-INH. We measured the concentration of the complexes in EDTA plasma from 6 healthy controls, from 5 with type I and 5 with type II C1-INH-HAE patients during symptom-free periods and from five patients during HAE attacks. We also assessed the concentration of these complexes in blood samples taken from one C1-INH-HAE patient during the kinetic follow-up of a HAE attack. The overall pattern of complexed C1-INH was similar in controls and C1-INH-HAE patients. C1-INH formed the highest concentration complexes with C1r and C1s. We observed higher plasma kallikrein/C1-INH complex concentration in both type I and type II C1-INH-HAE, and higher concentration of MASP-1/C1-INH, and MASP-2/C1-INH complexes in type II C1-INH-HAE patients compared to healthy controls and type I patients. Interestingly, none of the C1-INH complex concentrations changed significantly during HAE attacks. During the kinetic follow-up of an HAE attack, the concentration of plasma kallikrein/C1-INH complex was elevated at the onset of the attack. In parallel, C1r, FXIIa and FXIa complexes of C1-INH also tended to be elevated, and the changes in the concentrations of the complexes followed rather rapid kinetics. Our results suggest that the complement classical pathway plays a critical role in the metabolism of C1-INH, however, in C1-INH-HAE, contact system activation is the most significant in this respect. Due to the fast changes in the concentration of complexes, high resolution kinetic follow-up studies are needed to clarify the precise molecular background of C1-INH-HAE pathogenesis.
Asunto(s)
Proteína Inhibidora del Complemento C1/metabolismo , Angioedema Hereditario Tipos I y II/sangre , Complejos Multiproteicos/sangre , Serina Proteasas/sangre , Adulto , Anciano , Estudios de Casos y Controles , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
The complement system plays an important role in the pathogenesis of rheumatoid arthritis (RA). Besides driving lectin pathway (LP) activation, the mannan-binding lectin (MBL)-associated serine proteases (MASPs) also play a key role in regulating the alternative pathway (AP). We evaluated the effects of N-acetylgalactosamine (GalNAc)-conjugated MASP-1 and MASP-2 duplexes in vitro and in mice with and without arthritis to examine whether knockdown of MASP-1 and MASP-2 expression affects the development of arthritis. GalNAc-siRNAs for MASP-1 and MASP-2 demonstrated robust silencing of MASP-1 or MASP-2 at pM concentrations in vitro. To evaluate the impact of silencing in arthritic mice, we used the collagen antibody-induced arthritis (CAIA) mouse model of RA. Mice were injected a 10 mg/kg dose of GalNAc-siRNAs 3x s.q. prior to the induction of CAIA. Liver gene expression was examined using qRT-PCR, and protein levels were confirmed in the circulation by sandwich immunoassays and Western blot. At day 10, CAIA mice separately treated with MASP-1 and MASP-2 duplexes had a specific reduction in expression of liver MASP-1 (70-95%, p < 0.05) and MASP-2 (90%, p < 0.05) mRNA, respectively. MASP-1-siRNA treatment resulted in a 95% reduction in levels of MASP-1 protein in circulation with no effect on MASP-2 levels and clinical disease activity (CDA). In mice injected with MASP-2 duplex, there was a significant (p < 0.05) 90% decrease in ex vivo C4b deposition on mannan, with nearly complete elimination of MASP-2 in the circulation. MASP-2 silencing initially significantly decreased CDA by 60% but subsequently changed to a 40% decrease vs. control. Unexpectedly, GalNAc-siRNA-mediated knockdown of MASP-1 and MASP-2 revealed a marked effect of these proteins on the transcription of FD under normal physiological conditions, whereas LPS-induced inflammatory conditions reversed this effect on FD levels. LPS is recognized by Toll-like receptor 4 (TLR4), we found MBL not only binds to TLR4 an interaction with a Kd of 907 nM but also upregulated FD expression in differentiated adipocytes. We show that MASP-2 knockdown impairs the development of RA and that the interrelationship between proteins of the LP and the AP may extend to the transcriptional modulation of the FD gene.
Asunto(s)
Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Factor D del Complemento/metabolismo , Vía Alternativa del Complemento/genética , Lectina de Unión a Manosa de la Vía del Complemento/genética , Transcripción Genética/genética , Animales , Factor D del Complemento/genética , Expresión Génica , Lipopolisacáridos/farmacología , Hígado/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Interferencia de ARN , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , TransfecciónRESUMEN
Tissue-on-a-chip technologies are more and more important in the investigation of cellular function and in the development of novel drugs by allowing the direct screening of substances on human cells. Constituting the inner lining of vessel walls, endothelial cells are the key players in various physiological processes, moreover, they are the first to be exposed to most drugs currently used. However, to date, there is still no appropriate technology for the label-free, real-time and high-throughput monitoring of endothelial function. To this end, we developed an optical biosensor-based endothelial label-free biochip (EnLaB) assay that meets all the above requirements. Using our EnLaB platform, we screened a set of plasma serine proteases as possible endothelial cell activators, and first identified the endothelial cell activating function of three important serine proteases - namely kallikrein, C1r and mannan-binding lectin-associated serine-protease 2 (MASP-2) - and verified these results in well-established functional assays. EnLaB proved to be an effective tool for revealing novel cellular mechanisms as well as for the high-throughput screening of various compounds on endothelial cells.