Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Interferon Cytokine Res ; 42(9): 482-492, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35900274

RESUMEN

Colorectal carcinoma is the leading cause of cancer-related death. Previously we have shown that tumor suppressor single immunoglobulin interleukin-1-related receptor (SIGIRR) is frequently inactivated in human colorectal cancer by the increased expression of a novel SIGIRR isoform (SIGIRRΔE8). SIGIRRΔE8 showed increased retention in the cytoplasm and loss of complex glycan modification compared to the full-length SIGIRR. Now we found that the arginine residues located in the C-terminus of SIGIRRΔE8 serve as an endoplasmic reticulum retention signal and are required for resident protein ribophorin 1 (RPN1) interaction. In addition, we found that SIGIRRΔE8 exerts a direct impact on cell metabolism through interaction with the adenosine triphosphate synthase in the colorectal cancer cells. SIGIRRΔE8 expression promoted the metabolic shift through upregulation of mammalian target of rapamycin signaling pathway and dysregulation of mitochondrial function to promote survival and proliferation of colon cancer cells in xenograft model.


Asunto(s)
Neoplasias del Colon , Receptores de Interleucina-1/metabolismo , Adenosina Trifosfato/metabolismo , Arginina/metabolismo , Neoplasias del Colon/patología , Humanos , Inmunoglobulinas/metabolismo , Interleucina-1 , Redes y Vías Metabólicas , Serina-Treonina Quinasas TOR/metabolismo
2.
Oncogene ; 40(50): 6720-6735, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34657130

RESUMEN

Epithelial-mesenchymal transition (EMT) refers to the acquisition of mesenchymal properties in cells participating in tumor progression. One hallmark of EMT is the increased level of active ß-catenin, which can trigger the transcription of Wnt-specific genes responsible for the control of cell fate. We investigated how Monocyte Chemotactic Protein-1-Induced Protein-1 (MCPIP1), a negative regulator of inflammatory processes, affects EMT in a clear cell renal cell carcinoma (ccRCC) cell line, patient tumor tissues and a xenotransplant model. We showed that MCPIP1 degrades miRNAs via its RNase activity and thus protects the mRNA transcripts of negative regulators of the Wnt/ß-catenin pathway from degradation, which in turn prevents EMT. Mechanistically, the loss of MCPIP1 RNase activity led to the upregulation of miRNA-519a-3p, miRNA-519b-3p, and miRNA-520c-3p, which inhibited the expression of Wnt pathway inhibitors (SFRP4, KREMEN1, CXXC4, CSNK1A1 and ZNFR3). Thus, the level of active nuclear ß-catenin was increased, leading to increased levels of EMT inducers (SNAI1, SNAI2, ZEB1 and TWIST) and, consequently, decreased expression of E-cadherin, increased expression of mesenchymal markers, and acquisition of the mesenchymal phenotype. This study revealed that MCPIP1 may act as a tumor suppressor that prevents EMT by stabilizing Wnt inhibitors and decreasing the levels of active ß-catenin and EMT inducers.


Asunto(s)
Carcinoma de Células Renales/patología , Transición Epitelial-Mesenquimal , Factores de Transcripción Forkhead/fisiología , MicroARNs/antagonistas & inhibidores , Ribonucleasas/metabolismo , Factores de Transcripción/metabolismo , Proteína Wnt1/antagonistas & inhibidores , beta Catenina/antagonistas & inhibidores , Animales , Apoptosis , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Ratones , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Ribonucleasas/genética , Factores de Transcripción/genética , Células Tumorales Cultivadas , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
3.
Int J Biol Macromol ; 188: 391-403, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34371045

RESUMEN

One of the main structural proteins of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the nucleocapsid protein (N). The basic function of this protein is to bind genomic RNA and to form a protective nucleocapsid in the mature virion. The intrinsic ability of the N protein to interact with nucleic acids makes its purification very challenging. Therefore, typically employed purification methods appear to be insufficient for removing nucleic acid contamination. In this study, we present a novel purification protocol that enables the N protein to be prepared without any bound nucleic acids. We also performed comparative structural analysis of the N protein contaminated with nucleic acids and free of contamination and showed significant differences in the structural and phase separation properties of the protein. These results indicate that nucleic-acid contamination may severely affect molecular properties of the purified N protein. In addition, the notable ability of the N protein to form condensates whose morphology and behaviour suggest more ordered forms resembling gel-like or solid structures is described.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/aislamiento & purificación , Extracción Líquido-Líquido/métodos , SARS-CoV-2/metabolismo , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/aislamiento & purificación , Proteínas Intrínsecamente Desordenadas/metabolismo , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Agregado de Proteínas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
4.
Cytometry A ; 99(12): 1230-1239, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34110091

RESUMEN

It is expected that the subnuclear localization of a protein in a fixed cell, detected by microscopy, reflects its position in the living cell. We demonstrate, however, that some dynamic nuclear proteins can change their localization upon fixation by either crosslinking or non-crosslinking methods. We examined the subnuclear localization of the chromatin architectural protein HMGB1, linker histone H1, and core histone H2B in cells fixed by formaldehyde, glutaraldehyde, glyoxal, ethanol, or zinc salts. We demonstrate that some dynamic, weakly binding nuclear proteins, like HMGB1 and H1, may not only be unexpectedly lost from their original binding sites during the fixation process, but they can also diffuse through the nucleus and eventually bind in nucleoli. Such translocation to nucleoli does not occur in the case of core histone H2B, which is more stably bound to DNA and other histones. We suggest that the diminished binding of some dynamic proteins to DNA during fixation, and their subsequent translocation to nucleoli, is induced by changes of DNA structure, arising from interaction with a fixative. Detachment of dynamic proteins from chromatin can also be induced in cells already fixed by non-crosslinking methods when DNA structure is distorted by intercalating molecules. The proteins translocated during fixation from chromatin to nucleoli bind there to RNA-containing structures.


Asunto(s)
Núcleo Celular , Cromatina , Núcleo Celular/metabolismo , Cromosomas/metabolismo , ADN/metabolismo , Unión Proteica
5.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525359

RESUMEN

Nonalcoholic fatty liver disease is defined as the accumulation of excessive fat in the liver in the absence of excessive alcohol consumption or any secondary cause. Although the disease generally remains asymptomatic, chronic liver inflammation leads to fibrosis, liver cirrhosis, and even to the development of hepatocellular carcinoma (HCC). Fibrosis results from epithelial-mesenchymal transition (EMT), which leads to dedifferentiation of epithelial cells into cells with a mesenchymal-like phenotype. During EMT, epithelial cells with high expression of E-cadherin, influenced by growth factors, cytokines, and inflammatory processes, undergo morphological changes via enhanced expression of, e.g., vimentin, fibronectin, and N-cadherin. An inducer of EMT and, consequently, of fibrosis development is transforming growth factor beta (TGFß), a pleiotropic cytokine associated with the progression of hepatocarcinogenesis. However, the understanding of the molecular events that direct the development of steatosis into steatohepatitis and liver fibrosis remains incomplete. Our study revealed that both prolonged exposure of hepatocarcinoma cells to fatty acids in vitro and high-fat diet in mice (20 weeks) result in inflammation. Prolonged treatment with fatty acids increased the levels of TGFß, MMP9, and ß-catenin, important EMT inducers. Moreover, the livers of mice fed a high-fat diet exhibited features of liver fibrosis with increased TGFß and IL-1 levels. Increased expression of IL-1 correlated with a decrease in monocyte chemoattractant protein-induced protein 1 (MCPIP1), a negative regulator of the inflammatory response that regulates the stability of proinflammatory transcripts encoding IL-1. Our study showed that a high-fat diet induced EMT by increasing the levels of EMT-activating transcription factors, including Zeb1, Zeb2, and Snail and changed the protein profile to a profile characteristic of the mesenchymal phenotype.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/genética , Factor de Crecimiento Transformador beta/genética , beta Catenina/genética , Animales , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/genética , Fibronectinas/genética , Fibronectinas/metabolismo , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Interleucina-1/genética , Interleucina-1/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Ácido Oléico/farmacología , Ribonucleasas/genética , Ribonucleasas/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/agonistas , Factor de Crecimiento Transformador beta/metabolismo , Vimentina/genética , Vimentina/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , beta Catenina/agonistas , beta Catenina/metabolismo
6.
Int J Biol Macromol ; 163: 108-119, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32615218

RESUMEN

The FKBP39 from Drosophila melanogaster is a multifunctional regulatory immunophilin. It contains two globular domains linked by a highly charged disordered region. The N-terminal domain shows homology to the nucleoplasmin core domain, and the C-terminal domain is characteristic for the family of the FKBP immunophilin ligand binding domain. The specific partially disordered structure of the protein inspired us to investigate whether FKBP39 can drive spontaneous liquid-liquid phase separation (LLPS). Preliminary analyses using CatGranule and Pi-Pi contact predictors suggested a propensity for LLPS. Microscopy observations revealed that FKBP39 can self-concentrate to form liquid condensates. We also found that FKBP39 can lead to LLPS in the presence of RNA and peptides containing Arg-rich linear motifs derived from selected nuclear and nucleolar proteins. These heterotypic interactions have a stronger propensity for driving LLPS when compared to the interactions mediated by self-associating FKBP39 molecules. To investigate whether FKBP39 can drive LLPS in the cellular environment, we analysed it in fusion with YFP in COS-7 cells. The specific distribution and diffusion kinetics of FKBP39 examined by FRAP experiments provided evidence that immunophilin is an important driver of phase separation. The ability of FKBP39 to go into heterotypic interaction may be fundamental for ribosome subunits assembly.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/química , Inmunofilinas/química , Inmunofilinas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Arginina/metabolismo , Células COS , Chlorocebus aethiops , Simulación por Computador , Drosophila melanogaster/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Espectrometría de Masas , Microscopía Confocal , Microscopía Fluorescente , Agregado de Proteínas , Unión Proteica , ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/metabolismo , Cloruro de Sodio/química , Espectrofotometría
7.
Nucleic Acids Res ; 48(3): e14, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31832687

RESUMEN

We here describe a technique termed STRIDE (SensiTive Recognition of Individual DNA Ends), which enables highly sensitive, specific, direct in situ detection of single- or double-strand DNA breaks (sSTRIDE or dSTRIDE), in nuclei of single cells, using fluorescence microscopy. The sensitivity of STRIDE was tested using a specially developed CRISPR/Cas9 DNA damage induction system, capable of inducing small clusters or individual single- or double-strand breaks. STRIDE exhibits significantly higher sensitivity and specificity of detection of DNA breaks than the commonly used terminal deoxynucleotidyl transferase dUTP nick-end labeling assay or methods based on monitoring of recruitment of repair proteins or histone modifications at the damage site (e.g. γH2AX). Even individual genome site-specific DNA double-strand cuts induced by CRISPR/Cas9, as well as individual single-strand DNA scissions induced by the nickase version of Cas9, can be detected by STRIDE and precisely localized within the cell nucleus. We further show that STRIDE can detect low-level spontaneous DNA damage, including age-related DNA lesions, DNA breaks induced by several agents (bleomycin, doxorubicin, topotecan, hydrogen peroxide, UV, photosensitized reactions) and fragmentation of DNA in human spermatozoa. The STRIDE methods are potentially useful in studies of mechanisms of DNA damage induction and repair in cell lines and primary cultures, including cells with impaired repair mechanisms.


Asunto(s)
Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Microscopía Fluorescente , Proteína 9 Asociada a CRISPR , Línea Celular , Células Cultivadas , Colorantes Fluorescentes , Células HeLa , Humanos , Hibridación de Ácido Nucleico , Sondas de Oligonucleótidos , Fijación del Tejido
8.
FASEB J ; 33(2): 2301-2313, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30260704

RESUMEN

DNA lesions induce recruitment and accumulation of various repair factors, resulting in formation of discrete nuclear foci. Using superresolution fluorescence microscopy as well as live cell and quantitative imaging, we demonstrate that X-ray repair cross-complementing protein 1 (XRCC1), a key factor in single-strand break and base excision repair, is recruited into nuclear bodies formed in response to replication-related single-strand breaks. Intriguingly, these bodies are assembled immediately in the vicinity of these breaks and never fully colocalize with replication foci. They are structurally organized, containing canonical promyelocytic leukemia (PML) nuclear body protein SP100 concentrated in a peripheral layer, and XRCC1 in the center. They also contain other factors, including PML, poly(ADP-ribose) polymerase 1 (PARP1), ligase IIIα, and origin recognition complex subunit 5. The breast cancer 1 and -2 C terminus domains of XRCC1 are essential for formation of these repair foci. These results reveal that XRCC1-contaning foci constitute newly recognized PML-like nuclear bodies that accrete and locally deliver essential factors for repair of single-strand DNA breaks in replication regions.-Kordon, M. M., Szczurek, A., Berniak, K., Szelest, O., Solarczyk, K., Tworzydlo, M., Wachsmann-Hogiu, S., Vaahtokari, A., Cremer, C., Pederson, T., Dobrucki, J. W. PML-like subnuclear bodies, containing XRCC1, juxtaposed to DNA replication-based single-strand breaks.


Asunto(s)
Núcleo Celular/metabolismo , Roturas del ADN de Cadena Simple , Replicación del ADN , Proteína de la Leucemia Promielocítica/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Células Cultivadas , Reparación del ADN , Células HeLa , Humanos , Complejo de Reconocimiento del Origen/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Dominios Proteicos
9.
Sci Rep ; 8(1): 13971, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30228281

RESUMEN

Structured Illumination Microscopy (SIM) is a super-resolution microscopy method that has significantly advanced studies of cellular structures. It relies on projection of illumination patterns onto a fluorescently labelled biological sample. The information derived from the sample is then shifted to a detectable band, and in the process of image calculation in Fourier space the resolution is doubled. Refractive index homogeneity along the optical path is crucial to maintain a highly modulated illumination pattern necessary for high-quality SIM. This applies in particular to thick samples consisting of large cells and tissues. Surprisingly, sample mounting media for SIM have not undergone a significant evolution for almost a decade. Through identification and systematic evaluation of a number of non-hazardous, water-soluble chemical components of mounting media, we demonstrate an unprecedented improvement in SIM-image quality. Mounting solutions presented in this research are capable of reducing abundant light scattering which constitutes the limiting factor in 3D-SIM imaging of large Hodgkin's lymphoma and embryonic stem cells as well as 10 µm tissue sections. Moreover, we demonstrate usefulness of some of the media in single molecule localisation microscopy. The results presented here are of importance for standardisation of 3D-SIM data acquisition pipelines for an expanding community of users.


Asunto(s)
Enfermedad de Hodgkin/patología , Procesamiento de Imagen Asistido por Computador/métodos , Iluminación/instrumentación , Linfocitos/ultraestructura , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Bazo/ultraestructura , Animales , Humanos , Imagenología Tridimensional/métodos , Ratones , Mejoramiento de la Calidad , Células Tumorales Cultivadas
10.
Biol Chem ; 399(5): 467-484, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29337690

RESUMEN

FK506-binding proteins (FKBPs) belong to a distinct class of immunophilins that interact with immunosuppressants. They use their peptidyl-prolyl isomerase (PPIase) activity to catalyze the cis-trans conversion of prolyl bonds in proteins during protein-folding events. FKBPs also act as a unique group of chaperones. The Drosophila melanogaster peptidyl-prolyl cis-trans isomerase FK506-binding protein of 39 kDa (FKBP39) is thought to act as a transcriptional modulator of gene expression in 20-hydroxyecdysone and juvenile hormone signal transduction. The aim of this study was to analyze the molecular determinants responsible for the subcellular distribution of an FKBP39-yellow fluorescent protein (YFP) fusion construct (YFP-FKBP39). We found that YFP-FKBP39 was predominantly nucleolar. To identify the nuclear localization signal (NLS), a series of YFP-tagged FKBP39 deletion mutants were prepared and examined in vivo. The identified NLS signal is located in a basic domain. Detailed mutagenesis studies revealed that residues K188 and K191 are crucial for the nuclear targeting of FKBP39 and its nucleoplasmin-like (NPL) domain contains the sequence that controls the nucleolar-specific translocation of the protein. These results show that FKBP39 possesses a specific NLS in close proximity to a putative helix-turn-helix (HTH) motif and FKBP39 may bind DNA in vivo and in vitro.


Asunto(s)
Proteínas de Drosophila/análisis , Señales de Localización Nuclear/análisis , Proteínas de Unión a Tacrolimus/análisis , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/metabolismo , Señales de Localización Nuclear/metabolismo , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo
11.
Nucleus ; 9(1): 182-189, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29297245

RESUMEN

Methods of super-resolving light microscopy (SRM) have found an exponentially growing range of applications in cell biology, including nuclear structure analyses. Recent developments have proven that Single Molecule Localization Microscopy (SMLM), a type of SRM, is particularly useful for enhanced spatial analysis of the cell nucleus due to its highest resolving capability combined with very specific fluorescent labeling. In this commentary we offer a brief review of the latest methodological development in the field of SMLM of chromatin designated DNA Structure Fluctuation Assisted Binding Activated Localization Microscopy (abbreviated as fBALM) as well as its potential future applications in biology and medicine.


Asunto(s)
Núcleo Celular/química , ADN/química , Conformación de Ácido Nucleico , Imagen Individual de Molécula , Sitios de Unión , Núcleo Celular/metabolismo , ADN/metabolismo
12.
Front Immunol ; 8: 1575, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29201030

RESUMEN

The induction of Th2 responses is thought to be multifactorial, and emerge from specific pathways distinct from those associated with antagonistic antibacterial or antiviral Th1 responses. Here, we show that the recognition of non-viable Nippostrongylus brasiliensis (Nb) in the skin induces a strong recruitment of monocytes and neutrophils and the release of neutrophil extracellular traps (NETs). Nb also activates toll-like receptor 4 (TLR4) signaling with expression of Ifnb transcripts in the skin and the development of an IFN type I signature on helminth antigen-bearing dendritic cells in draining lymph nodes. Co-injection of Nb together with about 10,000 Gram-negative bacteria amplified this TLR4-dependent but NET-independent IFN type I response and enhanced the development of Th2 responses. Thus, a limited activation of antibacterial signaling pathways is able to boost antihelminthic responses, suggesting a role for bacterial sensing in the optimal induction of Th2 immunity.

13.
Nucleus ; 8(5): 447-448, 2017 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-28745542

RESUMEN

asbtract It may seem obvious that the structural complexity of the cell nucleus should be investigated by microscopy methods. However, the researchers' toolbox has been enriched enormously in recent years by ideas arriving from a number of fields unrelated to microscopy. The recent conference 4D Nucleome: The Cell Nucleus in Space and Time, which was held in Kraków in May 2017, was an opportunity to appreciate the growing number of conceptual approaches and newly emerging analytical techniques that are revolutionizing our understanding of the structure of chromatin and the nucleus.


Asunto(s)
Núcleo Celular/metabolismo , Cromatina/metabolismo
14.
Biochim Biophys Acta Biomembr ; 1859(8): 1301-1309, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28461050

RESUMEN

Organotin compounds, being biologically active, affect a variety of cellular functions due to their ability to accumulate in and penetrate biological membranes. These compounds influence the distribution of electrostatic charges, alter organization, disrupt molecular dynamics and change mechanical properties of biological membranes. It was found that the membrane/water partition coefficient equals 4, a value significantly higher than octanol/water partition coefficient. In addition, the effect of di- and tri-phenyltin chlorides on the mechanics of model lipid membranes was measured for the first time. It has been determined that phenyltins affect the global model lipid bilayer properties by reducing the membrane expansion modulus, when measured using micromanipulation technique, and elevating the bending rigidity coefficient of the lipid bilayer, as determined with the flickering noise spectroscopy. In addition, the elevated water permeability shows that phenyltins also cause the local defects formation in the lipid bilayer, i.e. lipid pores. These data shows that phenyltins may interfere indirectly with variety cellular processes by altering non-specifically the entire cellular membrane system. Accordingly, when phenyltins are added to macrophages in culture, they inflict massive alterations of cell morphology and interfere with membrane-associated processes, as visualized using fluorescence labelling of selected subcellular compartments.


Asunto(s)
Membrana Dobles de Lípidos/química , Macrófagos/efectos de los fármacos , Compuestos Orgánicos de Estaño/farmacología , Fosfatidilcolinas/química , Liposomas Unilamelares/química , Naranja de Acridina/metabolismo , Animales , Línea Celular , Cloruros/química , Relación Dosis-Respuesta a Droga , Peróxido de Hidrógeno/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Permeabilidad/efectos de los fármacos , Agua/metabolismo
15.
Acta Biochim Pol ; 64(1): 177-181, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28291845

RESUMEN

The human SUV3 helicase (SUV3, hSUV3, SUPV3L1) is a DNA/RNA unwinding enzyme belonging to the class of DexH-box helicases. It localizes predominantly in the mitochondria, where it forms an RNA-degrading complex called mitochondrial degradosome with exonuclease PNP (polynucleotide phosphorylase). Association of this complex with the polyA polymerase can modulate mitochondrial polyA tails. Silencing of the SUV3 gene was shown to inhibit the cell cycle and to induce apoptosis in human cell lines. However, since small amounts of the SUV3 helicase were found in the cell nuclei, it was not clear whether the observed phenotypes of SUV3 depletion were of mitochondrial or nuclear origin. In order to answer this question we have designed gene constructs able to inhibit the SUV3 activity exclusively in the cell nuclei. The results indicate that the observed growth rate impairment upon SUV3 depletion is due to its nuclear function(s). Unexpectedly, overexpression of the nuclear-targeted wild-type copies of the SUV3 gene resulted in a higher growth rate. In addition, we demonstrate that the SUV3 helicase can be found in the HeLa cell nucleoli, but it is not detectable in the DNA-repair foci. Our results indicate that the nucleolar-associated human SUV3 protein is an important factor in regulation of the cell cycle.


Asunto(s)
Ciclo Celular , Nucléolo Celular/metabolismo , ARN Helicasas DEAD-box/fisiología , Mitocondrias/metabolismo , Apoptosis , Núcleo Celular/metabolismo , Proliferación Celular , Endorribonucleasas , Células HeLa , Humanos , Complejos Multienzimáticos , Polirribonucleótido Nucleotidiltransferasa , ARN Helicasas , Transfección
16.
Nucleic Acids Res ; 45(8): e56, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28082388

RESUMEN

Advanced light microscopy is an important tool for nanostructure analysis of chromatin. In this report we present a general concept for Single Molecule localization Microscopy (SMLM) super-resolved imaging of DNA-binding dyes based on modifying the properties of DNA and the dye. By careful adjustment of the chemical environment leading to local, reversible DNA melting and hybridization control over the fluorescence signal of the DNA-binding dye molecules can be introduced. We postulate a transient binding as the basis for our variation of binding-activated localization microscopy (BALM). We demonstrate that several intercalating and minor-groove binding DNA dyes can be used to register (optically isolate) only a few DNA-binding dye signals at a time. To highlight this DNA structure fluctuation-assisted BALM (fBALM), we applied it to measure, for the first time, nanoscale differences in nuclear architecture in model ischemia with an anticipated structural resolution of approximately 50 nm. Our data suggest that this approach may open an avenue for the enhanced microscopic analysis of chromatin nano-architecture and hence the microscopic analysis of nuclear structure aberrations occurring in various pathological conditions. It may also become possible to analyse nuclear nanostructure differences in different cell types, stages of development or environmental stress conditions.


Asunto(s)
Cromatina/ultraestructura , ADN/ultraestructura , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Ácido Ascórbico/farmacología , Benzoxazoles/química , Sitios de Unión , Hipoxia de la Célula , Línea Celular , Línea Celular Tumoral , Cromatina/metabolismo , ADN/metabolismo , Glucosa/deficiencia , Células HeLa , Compuestos Heterocíclicos de 4 o más Anillos/química , Humanos , Concentración de Iones de Hidrógeno , Sustancias Intercalantes/química , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Linfocitos/ultraestructura , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/ultraestructura , Conformación de Ácido Nucleico , Desnaturalización de Ácido Nucleico , Compuestos de Quinolinio/química
17.
Data Brief ; 7: 157-71, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27054149

RESUMEN

Single Molecule Localization Microscopy (SMLM) is a recently emerged optical imaging method that was shown to achieve a resolution in the order of tens of nanometers in intact cells. Novel high resolution imaging methods might be crucial for understanding of how the chromatin, a complex of DNA and proteins, is arranged in the eukaryotic cell nucleus. Such an approach utilizing switching of a fluorescent, DNA-binding dye Vybrant® DyeCycle™ Violet has been previously demonstrated by us (Zurek-Biesiada et al., 2015) [1]. Here we provide quantitative information on the influence of the chemical environment on the behavior of the dye, discuss the variability in the DNA-associated signal density, and demonstrate direct proof of enhanced structural resolution. Furthermore, we compare different visualization approaches. Finally, we describe various opportunities of multicolor DNA/SMLM imaging in eukaryotic cell nuclei.

18.
Cell Cycle ; 15(8): 1156-67, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27097376

RESUMEN

Unscheduled DNA synthesis (UDS) is the final stage of the process of repair of DNA lesions induced by UVC. We detected UDS using a DNA precursor, 5-ethynyl-2'-deoxyuridine (EdU). Using wide-field, confocal and super-resolution fluorescence microscopy and normal human fibroblasts, derived from healthy subjects, we demonstrate that the sub-nuclear pattern of UDS detected via incorporation of EdU is different from that when BrdU is used as DNA precursor. EdU incorporation occurs evenly throughout chromatin, as opposed to just a few small and large repair foci detected by BrdU. We attribute this difference to the fact that BrdU antibody is of much larger size than EdU, and its accessibility to the incorporated precursor requires the presence of denatured sections of DNA. It appears that under the standard conditions of immunocytochemical detection of BrdU only fragments of DNA of various length are being denatured. We argue that, compared with BrdU, the UDS pattern visualized by EdU constitutes a more faithful representation of sub-nuclear distribution of the final stage of nucleotide excision repair induced by UVC. Using the optimized integrated EdU detection procedure we also measured the relative amount of the DNA precursor incorporated by cells during UDS following exposure to various doses of UVC. Also described is the high degree of heterogeneity in terms of the UVC-induced EdU incorporation per cell, presumably reflecting various DNA repair efficiencies or differences in the level of endogenous dT competing with EdU within a population of normal human fibroblasts.


Asunto(s)
Núcleo Celular/metabolismo , ADN/biosíntesis , Microscopía Confocal/métodos , Rayos Ultravioleta , Bromodesoxiuridina/metabolismo , Núcleo Celular/efectos de la radiación , Células Cultivadas , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Relación Dosis-Respuesta en la Radiación , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Fluorescencia , Humanos , Desnaturalización de Ácido Nucleico/efectos de la radiación , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/efectos de la radiación , Factores de Tiempo
19.
Exp Cell Res ; 343(2): 97-106, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26341267

RESUMEN

Higher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy. We report here that the standard DNA dye Vybrant(®) DyeCycle™ Violet can be used to provide single molecule localization microscopy (SMLM) images of DNA in nuclei of fixed mammalian cells. This SMLM method enabled optical isolation and localization of large numbers of DNA-bound molecules, usually in excess of 10(6) signals in one cell nucleus. The technique yielded high-quality images of nuclear DNA density, revealing subdiffraction chromatin structures of the size in the order of 100nm; the interchromatin compartment was visualized at unprecedented optical resolution. The approach offers several advantages over previously described high resolution DNA imaging methods, including high specificity, an ability to record images using a single wavelength excitation, and a higher density of single molecule signals than reported in previous SMLM studies. The method is compatible with DNA/multicolor SMLM imaging which employs simple staining methods suited also for conventional optical microscopy.


Asunto(s)
Núcleo Celular/metabolismo , ADN/metabolismo , Colorantes Fluorescentes/metabolismo , Microscopía Fluorescente/métodos , Nanoestructuras/química , Imagen Individual de Molécula/métodos , Animales , Chlorocebus aethiops , Cromosomas/metabolismo , Drosophila melanogaster , Células Vero
20.
DNA Repair (Amst) ; 37: 12-21, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26630398

RESUMEN

Induction of local photosensitised DNA damage has been used to study recruitment of repair factors, spatial organisation and subsequent stages of the repair processes. However, the damage induced by a focused laser beam interacting with a photosensitiser may not fully reflect the types of damage and repair encountered in cells of an animal under typical conditions in vivo. We report on two characteristic stages of recruitment of XRCC1 (a protein engaged in BER and SSB repair pathways), in response to low level DNA damage induced by visible light. We demonstrate that, when just a few DNA breaks are induced in a small region of the nucleus, the recruited XRCC1 is initially distributed uniformly throughout this region, and rearranges into several small stationary foci within minutes. In contrast, when heavy damage of various types (including oxidative damage) is induced in cells pre-sensitized with a DNA-binding drug ethidium bromide, XRCC1 is also recruited but fails to rearrange from the stage of the uniform distribution to the stage of several small foci, indicating that this heavy damage interferes with the progress and completion of the repair processes. We hypothesize that that first stage may reflect recruitment of XRCC1 to poly(ADP-ribose) moieties in the region surrounding the single-strand break, while the second-binding directly to the DNA lesions. We also show that moderate damage or stress induces formation of two types of XRCC1-containing foci differing in their mobility. A large subset of DNA damage-induced XRCC1 foci is associated with a major component of PML nuclear bodies--the Sp100 protein.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Respuesta al Choque Térmico , Luz , Antígenos Nucleares/metabolismo , Autoantígenos/metabolismo , Núcleo Celular/metabolismo , Femenino , Humanos , Poli Adenosina Difosfato Ribosa/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...