Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Biochem ; 404(2): 186-92, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20566370

RESUMEN

LRRK2 is a large and complex protein that possesses kinase and GTPase activities and has emerged as the most relevant player in PD pathogenesis possibly through a toxic gain-of-function mechanism. Kinase activity is a critical component of LRRK2 function and represents a viable target for drug discovery. We now report the development of a mechanism-based TR-FRET assay for the LRRK2 kinase activity using full-length LRRK2. In this assay, PLK-peptide was chosen as the phosphoryl acceptor. A combination of steady-state kinetic studies and computer simulations was used to calculate the initial concentrations of ATP and PLK-peptide to generate a steady-state situation that favors the identification of ATP noncompetitive inhibitors. The assay was also run in the absence of GTP. Under these conditions, the assay was sensitive to inhibitors that directly interact with the kinase domain and those that modulate the kinase activity by directly interacting with other domains including the GTPase domain. The assay was optimized and used to robustly evaluate our compound library in a 384-well format. An inhibitor identified through the screen was further characterized as a noncompetitive inhibitor with both ATP and PLK-peptide and showed similar inhibition against LRRK2 WT and the mutant G2019S.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas de Ciclo Celular/química , Descubrimiento de Drogas , Transferencia Resonante de Energía de Fluorescencia , Humanos , Cinética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Mutagénesis Sitio-Dirigida , Péptidos/química , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/química , Quinasa Tipo Polo 1
2.
Biochemistry ; 49(9): 2008-17, 2010 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-20146535

RESUMEN

Recent studies have identified mutations in the leucine-rich repeat kinase2 gene (LRRK2) in the most common familial forms and some sporadic forms of Parkinson's disease (PD). LRRK2 is a large and complex protein that possesses kinase and GTPase activities. Some LRRK2 mutants enhance kinase activity and possibly contribute to PD through a toxic gain-of-function mechanism. Given the role of LRRK2 in the pathogenesis of PD, understanding the kinetic mechanism of its two enzymatic properties is critical for the discovery of inhibitors of LRRK2 kinase that would be therapeutically useful in treating PD. In this report, by using LRRK2 protein purified from murine brain, first we characterize kinetic mechanisms for the LRRK2-catalyzed phosphorylation of two peptide substrates: PLK-derived peptide (PLK-peptide) and LRRKtide. We found that LRRK2 follows a rapid equilibrium random mechanism for the phosphorylation of PLK-peptide with either ATP or PLK-peptide being the first substrate binding to the enzyme, as evidenced by initial velocity and inhibition mechanism studies with nucleotide analogues AMP and AMP-PNP, product ADP, and an analogue of the peptide substrate. The binding of the first substrate has no effect on the binding affinity of the second substrate. Identical mechanistic conclusions were drawn when LRRKtide was the phosphoryl acceptor. Next, we characterize the GTPase activity of LRRK2 with a k(cat) of 0.2 +/- 0.02 s(-1) and a K(m) of 210 +/- 29 microM. A SKIE of 0.97 +/- 0.04 was measured on k(cat) for the GTPase activity of LRRK2 in a D(2)O molar fraction of 0.86 and suggested that the product dissociation step is rate-limiting, of the steps governed by k(cat) in the LRRK2-catalyzed GTP hydrolysis. Surprisingly, binding of GTP, GDP, or GMP has no effect on kinase activity, although GMP and GDP inhibit the GTPase activity. Finally, we have identified compound LDN-73794 through screen of LRRK2 kinase inhibitors. Our study revealed that this compound is a competitive inhibitor of the binding of ATP and inhibits the kinase activity without affecting the GTPase activity.


Asunto(s)
GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Catálisis , Transferencia Resonante de Energía de Fluorescencia , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Enfermedad de Parkinson/enzimología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Especificidad por Sustrato
3.
Biochemistry ; 47(32): 8367-77, 2008 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-18636751

RESUMEN

Cdk5/p25 is a member of the family of cyclin-dependent, Ser/Thr kinases and is thought to play a causal role in Alzheimer's disease (AD) due to its ability to phosphorylate the protein tau, and thus promote the latter's aggregation into intraneuronal tangles. Given this, we and others are seeking inhibitors of cdk5/p25 as possible disease-modifying therapeutics for AD. In this paper, we first report the kinetic mechanism for the cdk5/p25-catalyzed phosphorylation of tau and histone H-1-derived peptide (H1P). These studies served as a necessary kinetic backdrop for investigations of the mechanism of inhibition by prototype inhibitors N4-(6-aminopyrimidin-4-yl)-sulfanilamide (APS) and 1-(5-cyclobutyl-thiazol-2-yl)-3-isoquinolin-5-yl-urea (CTIU). We found that the cdk5/p25-catalyzed phosphorylation of tau follows a rapid equilibrium, random kinetic mechanism, as evidenced by initial velocity analysis indicating sequential addition of tau and ATP, and studies of the mechanism of inhibition by substrate analogue AMP, product ADP, and analogues of peptide substrate H1P. Identical mechanistic conclusions were drawn when H1P was the phosphoryl acceptor. Subsequent studies of inhibition by APS and CTIU revealed that both compounds can bind to all four steady-state forms of the enzyme, to form the complexes E:I, E:I:tau, E:I:ATP, and E:I:tau:ATP. These results contrast with reported claims that APS and CTIU are competitive inhibitors of the binding of ATP.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 5 Dependiente de la Ciclina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas tau/metabolismo , Animales , Catálisis , Bovinos , Humanos , Cinética , Fosforilación , Especificidad por Sustrato
4.
Curr Alzheimer Res ; 4(5): 547-9, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18220519

RESUMEN

Cyclin-dependent kinase 5 (cdk5) is a member of the serine-threonine kinase family of cyclin-dependent kinases. This family is known for its role in the cell cycle, but cdk5 differs due to its interaction with activators p35 or p39, both abundant in post-mitotic neurons. Cdk5 is not known to have a role in cell cycle regulation at all, but is known to be an important modulator of neuronal activity. Cdk5 has been an attractive target for CNS diseases for a number of years. Among its attractions is the possibility that inhibitors will prevent the pathological phosphorylation of tau and neurofibrillary pathology in both Alzheimer's disease and tauopathies. More recently, there has been evidence that cdk5 is involved in the processing of pain and therefore inhibitors would also have potential therapeutic value for acute pain. Several classes of potent chemical inhibitors for cdk5 have been identified but most are competitive with the ATP binding site, resulting in a lack of specificity among the other cyclin-dependent kinases as well as other ATP-dependent kinases. We are working to discover specific inhibitors that might disrupt the interaction of tau and cdk5 at sites other than the ATP binding site. We are screening our compound library of 110,000 compounds using the full length tau as a substrate and will separate ATP competitive from non-competitive binders. In addition, we are taking a computational approach with virtual screening to identify non-ATP-competitive binders. These two approaches may lead to the discovery of site-specific inhibitors for tau and cdk5 interactions rather than competitive inhibitors for ATP binding. The hope is that non-ATP competitive compounds will more likely be selective and will be better therapeutics.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 5 Dependiente de la Ciclina/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión/efectos de los fármacos , Técnicas Químicas Combinatorias , Unión Proteica/efectos de los fármacos , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...