Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 19(11): e1011755, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38032851

RESUMEN

HIV rapidly rebounds after interruption of antiretroviral therapy (ART). HIV-specific CD8+ T cells may act to prevent early events in viral reactivation. However, the presence of viral immune escape mutations may limit the effect of CD8+ T cells on viral rebound. Here, we studied the impact of CD8 immune pressure on post-treatment rebound of barcoded SIVmac293M in 14 Mamu-A*01 positive rhesus macaques that initiated ART on day 14, and subsequently underwent two analytic treatment interruptions (ATIs). Rebound following the first ATI (seven months after ART initiation) was dominated by virus that retained the wild-type sequence at the Mamu-A*01 restricted Tat-SL8 epitope. By the end of the two-month treatment interruption, the replicating virus was predominantly escaped at the Tat-SL8 epitope. Animals reinitiated ART for 3 months prior to a second treatment interruption. Time-to-rebound and viral reactivation rate were significantly slower during the second treatment interruption compared to the first. Tat-SL8 escape mutants dominated early rebound during the second treatment interruption, despite the dominance of wild-type virus in the proviral reservoir. Furthermore, the escape mutations detected early in the second treatment interruption were well predicted by those replicating at the end of the first, indicating that escape mutant virus in the second interruption originated from the latent reservoir as opposed to evolving de novo post rebound. SL8-specific CD8+ T cell levels in blood prior to the second interruption were marginally, but significantly, higher (median 0.73% vs 0.60%, p = 0.016). CD8+ T cell depletion approximately 95 days after the second treatment interruption led to the reappearance of wild-type virus. This work suggests that CD8+ T cells can actively suppress the rebound of wild-type virus, leading to the dominance of escape mutant virus after treatment interruption.


Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Macaca mulatta , Replicación Viral/fisiología , Linfocitos T CD8-positivos , Epítopos , Carga Viral , Antirretrovirales/uso terapéutico , Antirretrovirales/farmacología
2.
PLoS Pathog ; 19(10): e1011660, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37801446

RESUMEN

One approach to 'functional cure' of HIV infection is to induce durable control of HIV replication after the interruption of antiretroviral therapy (ART). However, the major factors that determine the viral 'setpoint' level after treatment interruption are not well understood. Here we combine data on ART interruption following SIV infection for 124 total animals from 10 independent studies across 3 institutional cohorts to understand the dynamics and predictors of post-treatment viral control. We find that the timing of treatment initiation is an important determinant of both the peak and early setpoint viral levels after treatment interruption. During the first 3 weeks of infection, every day of delay in treatment initiation is associated with a 0.22 log10 copies/ml decrease in post-rebound peak and setpoint viral levels. However, delay in initiation of ART beyond 3 weeks of infection is associated with higher post-rebound setpoint viral levels. For animals treated beyond 3 weeks post-infection, viral load at ART initiation was the primary predictor of post-rebound setpoint viral levels. Potential alternative predictors of post-rebound setpoint viral loads including cell-associated DNA or RNA, time from treatment interruption to rebound, and pre-interruption CD8+ T cell responses were also examined in the studies where these data were available. This analysis suggests that optimal timing of treatment initiation may be an important determinant of post-treatment control of HIV.


Asunto(s)
Infecciones por VIH , Animales , Infecciones por VIH/tratamiento farmacológico , Linfocitos T CD8-positivos , ARN Viral , Carga Viral , Antirretrovirales/farmacología , Antirretrovirales/uso terapéutico
3.
J Theor Biol ; 573: 111595, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37562674

RESUMEN

A common side effect of pharmaceutical drugs is an increased propensity for cardiac arrhythmias. Many drugs bind to cardiac ion-channels in a state-specific manner, which alters the ionic conductances in complicated ways, making it difficult to identify the mechanisms underlying pro-arrhythmic drug effects. To better understand the fundamental mechanisms underlying the diverse effects of state-dependent sodium (Na+) channel blockers on cellular excitability, we consider two canonical motifs of drug-ion-channel interactions and compare the effects of Na+ channel blockers on the rate-dependence of peak upstroke velocity, conduction velocity, and vulnerable window size. In the literature, both motifs are referred to as "guarded receptor," but here we distinguish between state-specific binding that does not alter channel gating (referred to here as "guarded receptor") and state-specific binding that blocks certain gating transitions ("gate immobilization"). For each drug binding motif, we consider drugs that bind to the inactivated state and drugs that bind to the non-inactivated state of the Na+ channel. Exploiting the idealized nature of the canonical binding motifs, we identify the fundamental mechanisms underlying the effects on excitability of the various binding interactions. Specifically, we derive the voltage-dependence of the drug binding time constants and the equilibrium fractions of channels bound to drug, and we then derive a formula that incorporates these time constants and equilibrium fractions to elucidate the fundamental mechanisms. In the case of charged drug, we find that drugs that bind to inactivated channels exhibit greater rate-dependence than drugs that bind to non-inactivated channels. For neutral drugs, the effects of guarded receptor interactions are rate-independent, and we describe a novel mechanism for reverse rate-dependence resulting from neutral drug binding to non-inactivated channels via the gate immobilization motif.


Asunto(s)
Bloqueadores de los Canales de Sodio , Canales de Sodio , Humanos , Arritmias Cardíacas , Corazón , Canales Iónicos , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/metabolismo
4.
PLoS Pathog ; 19(7): e1011059, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37399208

RESUMEN

Transmitted/founder (TF) simian-human immunodeficiency viruses (SHIVs) express HIV-1 envelopes modified at position 375 to efficiently infect rhesus macaques while preserving authentic HIV-1 Env biology. SHIV.C.CH505 is an extensively characterized virus encoding the TF HIV-1 Env CH505 mutated at position 375 shown to recapitulate key features of HIV-1 immunobiology, including CCR5-tropism, a tier 2 neutralization profile, reproducible early viral kinetics, and authentic immune responses. SHIV.C.CH505 is used frequently in nonhuman primate studies of HIV, but viral loads after months of infection are variable and typically lower than those in people living with HIV. We hypothesized that additional mutations besides Δ375 might further enhance virus fitness without compromising essential components of CH505 Env biology. From sequence analysis of SHIV.C.CH505-infected macaques across multiple experiments, we identified a signature of envelope mutations associated with higher viremia. We then used short-term in vivo mutational selection and competition to identify a minimally adapted SHIV.C.CH505 with just five amino acid changes that substantially improve virus replication fitness in macaques. Next, we validated the performance of the adapted SHIV in vitro and in vivo and identified the mechanistic contributions of selected mutations. In vitro, the adapted SHIV shows improved virus entry, enhanced replication on primary rhesus cells, and preserved neutralization profiles. In vivo, the minimally adapted virus rapidly outcompetes the parental SHIV with an estimated growth advantage of 0.14 days-1 and persists through suppressive antiretroviral therapy to rebound at treatment interruption. Here, we report the successful generation of a well-characterized, minimally adapted virus, termed SHIV.C.CH505.v2, with enhanced replication fitness and preserved native Env properties that can serve as a new reagent for NHP studies of HIV-1 transmission, pathogenesis, and cure.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Macaca mulatta/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Replicación Viral/fisiología
5.
Nat Med ; 29(3): 574-578, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36864253

RESUMEN

Booster vaccination for the prevention of Coronavirus Disease 2019 (COVID-19) is required to overcome loss of protection due to waning immunity and the spread of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Studies have assessed the ability of existing ancestral-based vaccines as well as novel variant-modified vaccine regimens to boost immunity to different variants, and a crucial question is to assess the relative benefits of these different approaches. Here we aggregate data on neutralization titers from 14 reports (three published papers, eight preprints, two press releases and notes of one advisory committee meeting) comparing booster vaccination with the current ancestral-based vaccines or variant-modified vaccines. Using these data, we compare the immunogenicity of different vaccination regimens and predict the relative protection of booster vaccines under different scenarios. We predict that boosting with ancestral vaccines can markedly enhance protection against both symptomatic and severe disease from SARS-CoV-2 variant viruses, although variant-modified vaccines may provide additional protection, even if not matched to the circulating variants. This work provides an evidence-based framework to inform choices on future SARS-CoV-2 vaccine regimens.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Anticuerpos Antivirales
6.
Nat Microbiol ; 8(2): 299-308, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36690860

RESUMEN

Persistence of the human immunodeficiency virus type-1 (HIV-1) latent reservoir in infected individuals remains a problem despite fully suppressive antiretroviral therapy (ART). While reservoir formation begins during acute infection, the mechanisms responsible for its establishment remain unclear. CD8+ T cells are important during the initial control of viral replication. Here we examined the effect of CD8+ T cells on formation of the latent reservoir in simian immunodeficiency virus (SIV)-infected macaques by performing experimental CD8+ depletion either before infection or before early (that is, day 14 post-infection) ART initiation. We found that CD8+ depletion resulted in slower decline of viremia, indicating that CD8+ lymphocytes reduce the average lifespan of productively infected cells during acute infection and early ART, presumably through SIV-specific cytotoxic T lymphocyte (CTL) activity. However, CD8+ depletion did not change the frequency of infected CD4+ T cells in the blood or lymph node as measured by the total cell-associated viral DNA or intact provirus DNA assay. In addition, the size of the persistent reservoir remained the same when measuring the kinetics of virus rebound after ART interruption. These data indicate that during early SIV infection, the viral reservoir that persists under ART is established largely independent of CTL control.


Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Virus de la Inmunodeficiencia de los Simios/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Linfocitos T CD8-positivos , Antirretrovirales/uso terapéutico , Macaca mulatta , Infecciones por VIH/tratamiento farmacológico
7.
PLoS Comput Biol ; 17(6): e1009145, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34185778

RESUMEN

State-dependent sodium channel blockers are often prescribed to treat cardiac arrhythmias, but many sodium channel blockers are known to have pro-arrhythmic side effects. While the anti and proarrhythmic potential of a sodium channel blocker is thought to depend on the characteristics of its rate-dependent block, the mechanisms linking these two attributes are unclear. Furthermore, how specific properties of rate-dependent block arise from the binding kinetics of a particular drug is poorly understood. Here, we examine the rate-dependent effects of the sodium channel blocker lidocaine by constructing and analyzing a novel drug-channel interaction model. First, we identify the predominant mode of lidocaine binding in a 24 variable Markov model for lidocaine-sodium channel interaction by Moreno et al. Specifically, we find that (1) the vast majority of lidocaine bound to sodium channels is in the neutral form, i.e., the binding of charged lidocaine to sodium channels is negligible, and (2) neutral lidocaine binds almost exclusively to inactivated channels and, upon binding, immobilizes channels in the inactivated state. We then develop a novel 3-variable lidocaine-sodium channel interaction model that incorporates only the predominant mode of drug binding. Our low-dimensional model replicates an extensive amount of the voltage-clamp data used to parameterize the Moreno et al. model. Furthermore, the effects of lidocaine on action potential upstroke velocity and conduction velocity in our model are similar to those predicted by the Moreno et al. model. By exploiting the low-dimensionality of our model, we derive an algebraic expression for level of rate-dependent block as a function of pacing frequency, restitution properties, diastolic and plateau potentials, and drug binding rate constants. Our model predicts that the level of rate-dependent block is sensitive to alterations in restitution properties and increases in diastolic potential, but it is insensitive to variations in the shape of the action potential waveform and lidocaine binding rates.


Asunto(s)
Corazón/efectos de los fármacos , Lidocaína/farmacología , Lidocaína/farmacocinética , Modelos Cardiovasculares , Miocardio/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Antiarrítmicos/farmacocinética , Antiarrítmicos/farmacología , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/metabolismo , Biología Computacional , Simulación por Computador , Frecuencia Cardíaca/fisiología , Humanos , Cinética , Cadenas de Markov , Técnicas de Placa-Clamp , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacocinética , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología
8.
Int J STD AIDS ; 32(8): 718-728, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33533689

RESUMEN

The HIV epidemic in the Philippines is the fastest growing globally, and disproportionately affects cisgender men who have sex with men (cis-MSM) demanding effective strategies for this key population (KP) group. KP-specific and community-based (CB) interventions have improved the HIV response elsewhere, but these have yet to be evaluated locally. We analyzed the HIV care cascade outcomes in a KP-led, CB HIV test-and-treat center and determined factors that affect these by performing a retrospective study of medical records of 3137 patients diagnosed from January 2016 to March 2019 in LoveYourself in Manila, Philippines. Multivariate logistic regression was performed to determine predictors affecting the likelihood of antiretroviral therapy (ART) initiation and viral load (VL) suppression. As to UNAIDS 90-90-90 targets, LoveYourself had higher rates than national outcomes with 78% initiated ART and 84% achieved VL suppression. Such satisfactory performance is consistent with other studies exploring CB, KP-led approaches among cis-MSM. Patients who presented with WHO Stages 2-4 and those with sexually transmitted infections were less likely to initiate ART. Patients who presented with WHO Stages 2-4 and those whose ART was started late were less likely to be virally suppressed. These findings suggest the need to develop responsive interventions to reach the UNAIDS targets.


Asunto(s)
Infecciones por VIH , Minorías Sexuales y de Género , Estudios Transversales , Infecciones por VIH/diagnóstico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Homosexualidad Masculina , Humanos , Masculino , Filipinas/epidemiología , Estudios Retrospectivos
9.
PLoS Negl Trop Dis ; 14(7): e0008526, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32735631

RESUMEN

Each year, 4.3 million pregnant women are exposed to malaria risk in Latin America and the Caribbean. Plasmodium vivax causes 76% of the regional malaria burden and appears to be less affected than P. falciparum by current elimination efforts. This is in part due to the parasite's ability to stay dormant in the liver and originate relapses within months after a single mosquito inoculation. Primaquine (PQ) is routinely combined with chloroquine (CQ) or other schizontocidal drugs to supress P. vivax relapses and reduce the risk of late blood-stage recrudescences of parasites with low-grade CQ resistance. However, PQ is contraindicated for pregnant women, who remain at increased risk of repeated infections following CQ-only treatment. Here we apply a mathematical model to time-to-recurrence data from Juruá Valley, Brazil's main malaria transmission hotspot, to quantify the extra burden of parasite recurrences attributable to PQ ineligibility in pregnant women. The model accounts for competing risks, since relapses and late recrudescences (that may be at least partially prevented by PQ) and new infections (that are not affected by PQ use) all contribute to recurrences. We compare recurrence rates observed after primary P. vivax infections in 158 pregnant women treated with CQ only and 316 P. vivax infections in non-pregnant control women, matched for age, date of infection, and place of residence, who were administered a standard CQ-PQ combination. We estimate that, once infected with P. vivax, 23% of the pregnant women have one or more vivax malaria recurrences over the next 12 weeks; 86% of these early P. vivax recurrences are attributable to relapses or late recrudescences, rather than new infections that could be prevented by reducing malaria exposure during pregnancy. Model simulations indicate that weekly CQ chemoprophylaxis extending over 4 to 12 weeks, starting after the first vivax malaria episode diagnosed in pregnancy, might reduce the risk of P. vivax recurrences over the next 12 months by 20% to 65%. We conclude that post-treatment CQ prophylaxis could be further explored as a measure to prevent vivax malaria recurrences in pregnancy and avert their adverse effects on maternal and neonatal health.


Asunto(s)
Antimaláricos/uso terapéutico , Malaria Vivax/prevención & control , Plasmodium vivax , Complicaciones Parasitarias del Embarazo/prevención & control , Primaquina/administración & dosificación , Adolescente , Adulto , Brasil , Estudios de Casos y Controles , Niño , Cloroquina/administración & dosificación , Cloroquina/uso terapéutico , Femenino , Humanos , Malaria Vivax/tratamiento farmacológico , Modelos Biológicos , Embarazo , Primaquina/uso terapéutico , Recurrencia , Adulto Joven
10.
Sci Rep ; 10(1): 2227, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-32042107

RESUMEN

HIV-1 viral transcription persists in patients despite antiretroviral treatment, potentially due to intermittent HIV-1 LTR activation. While several mathematical models have been explored in the context of LTR-protein interactions, in this work for the first time HIV-1 LTR model featuring repressed, intermediate, and activated LTR states is integrated with generation of long (env) and short (TAR) RNAs and proteins (Tat, Pr55, and p24) in T-cells and macrophages using both cell lines and infected primary cells. This type of extended modeling framework allows us to compare and contrast behavior of these two cell types. We demonstrate that they exhibit unique LTR dynamics, which ultimately results in differences in the magnitude of viral products generated. One of the distinctive features of this work is that it relies on experimental data in reaction rate computations. Two RNA transcription rates from the activated promoter states are fit by comparison of experimental data to model predictions. Fitting to the data also provides estimates for the degradation/exit rates for long and short viral RNA. Our experimentally generated data is in reasonable agreement for the T-cell as well macrophage population and gives strong evidence in support of using the proposed integrated modeling paradigm. Sensitivity analysis performed using Latin hypercube sampling method confirms robustness of the model with respect to small parameter perturbations. Finally, incorporation of a transcription inhibitor (F07#13) into the governing equations demonstrates how the model can be used to assess drug efficacy. Collectively, our model indicates transcriptional differences between latently HIV-1 infected T-cells and macrophages and provides a novel platform to study various transcriptional dynamics leading to latency or activation in numerous cell types and physiological conditions.


Asunto(s)
Fármacos Anti-VIH/farmacología , Regulación Viral de la Expresión Génica/inmunología , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , Macrófagos/inmunología , Linfocitos T/inmunología , Fármacos Anti-VIH/uso terapéutico , Línea Celular , Farmacorresistencia Viral/efectos de los fármacos , Farmacorresistencia Viral/genética , Farmacorresistencia Viral/inmunología , Infecciones por VIH/sangre , Infecciones por VIH/inmunología , Duplicado del Terminal Largo de VIH/genética , VIH-1/efectos de los fármacos , VIH-1/inmunología , Humanos , Macrófagos/virología , Modelos Genéticos , Modelos Inmunológicos , Cultivo Primario de Células , ARN Viral/genética , ARN Viral/metabolismo , Linfocitos T/virología , Transcripción Genética/efectos de los fármacos , Transcripción Genética/inmunología , Replicación Viral/efectos de los fármacos , Replicación Viral/genética , Replicación Viral/inmunología
11.
Biol Cybern ; 113(1-2): 105-120, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30209563

RESUMEN

Mathematical models can provide useful insights explaining behavior observed in experimental data; however, rigorous analysis is needed to select a subset of model parameters that can be informed by available data. Here we present a method to estimate an identifiable set of parameters based on baseline left ventricular pressure and volume time series data. From this identifiable subset, we then select, based on current understanding of cardiovascular control, parameters that vary in time in response to blood withdrawal, and estimate these parameters over a series of blood withdrawals. These time-varying parameters are first estimated using piecewise linear splines minimizing the mean squared error between measured and computed left ventricular pressure and volume data over four consecutive blood withdrawals. As a final step, the trends in these splines are fit with empirical functional expressions selected to describe cardiovascular regulation during blood withdrawal. Our analysis at baseline found parameters representing timing of cardiac contraction, systemic vascular resistance, and cardiac contractility to be identifiable. Of these parameters, vascular resistance and cardiac contractility were varied in time. Data used for this study were measured in a control Sprague-Dawley rat. To our knowledge, this is the first study to analyze the response to multiple blood withdrawals both experimentally and theoretically, as most previous studies focus on analyzing the response to one large blood withdrawal. Results show that during each blood withdrawal both systemic vascular resistance and contractility decrease acutely and partially recover, and they decrease chronically across the series of blood withdrawals.


Asunto(s)
Sistema Cardiovascular/fisiopatología , Hemorragia/patología , Modelos Cardiovasculares , Modelos Teóricos , Flujo Sanguíneo Regional/fisiología , Animales , Presión Sanguínea/fisiología , Volumen Sanguíneo/fisiología , Intervalos de Confianza , Hemorragia/fisiopatología , Masculino , Dinámicas no Lineales , Ratas , Ratas Sprague-Dawley , Función Ventricular Izquierda
12.
PLoS Comput Biol ; 12(7): e1005005, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27409243

RESUMEN

Subcellular compartmentation of the ubiquitous second messenger cAMP has been widely proposed as a mechanism to explain unique receptor-dependent functional responses. How exactly compartmentation is achieved, however, has remained a mystery for more than 40 years. In this study, we developed computational and mathematical models to represent a subcellular sarcomeric space in a cardiac myocyte with varying detail. We then used these models to predict the contributions of various mechanisms that establish subcellular cAMP microdomains. We used the models to test the hypothesis that phosphodiesterases act as functional barriers to diffusion, creating discrete cAMP signaling domains. We also used the models to predict the effect of a range of experimentally measured diffusion rates on cAMP compartmentation. Finally, we modeled the anatomical structures in a cardiac myocyte diad, to predict the effects of anatomical diffusion barriers on cAMP compartmentation. When we incorporated experimentally informed model parameters to reconstruct an in silico subcellular sarcomeric space with spatially distinct cAMP production sites linked to caveloar domains, the models predict that under realistic conditions phosphodiesterases alone were insufficient to generate significant cAMP gradients. This prediction persisted even when combined with slow cAMP diffusion. When we additionally considered the effects of anatomic barriers to diffusion that are expected in the cardiac myocyte dyadic space, cAMP compartmentation did occur, but only when diffusion was slow. Our model simulations suggest that additional mechanisms likely contribute to cAMP gradients occurring in submicroscopic domains. The difference between the physiological and pathological effects resulting from the production of cAMP may be a function of appropriate compartmentation of cAMP signaling. Therefore, understanding the contribution of factors that are responsible for coordinating the spatial and temporal distribution of cAMP at the subcellular level could be important for developing new strategies for the prevention or treatment of unfavorable responses associated with different disease states.


Asunto(s)
Simulación por Computador , AMP Cíclico/química , AMP Cíclico/metabolismo , Espacio Intracelular/química , Espacio Intracelular/metabolismo , Transducción de Señal/fisiología , Animales , Células Cultivadas , Biología Computacional , Ratones , Miocitos Cardíacos/química , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...