Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 13: 894093, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923624

RESUMEN

Background: Subclinical thyrotoxicosis (SCT) is defined by low or undetectable thyroid-stimulating hormones and normal thyroid hormones. The treatment of SCT is uncertain despite being associated with increased cardiovascular risk (CVR) and mortality. Circulating endothelial progenitor cells (cEPCs) and circulating angiogenic cells (CACs) have been found to be reduced in conditions with CVR. We aimed to evaluate whether endothelial function and cEPC and CAC counts were reduced in SCT and to study the in vitro effect of triiodothyronine (T3) on proangiogenic cell (PAC) function from young healthy controls. Methods: cEPCs (quantified by flow cytometry, 20 SCT/20 controls), CACs following in vitro cultures (15 SCT/14 controls), paracrine function of CACs, endothelial function by flow-mediated dilation (FMD, 9 SCT/9 controls), and the effect of T3 on apoptosis and endothelial nitric oxide synthase (eNOS) expression in PACs were studied. Results: p < 0.001, CD133+/VEGFR-2+ 0.4 (0.0-0.7) vs. 0.6 (0.0-4.6), p = 0.009, CD34+/VEGFR-2+ 0.3 (0.0-1.0) vs. 0.7 (0.1-4.9), p = 0.002; while CAC count was similar. SCT predicted a lower cEPC count after adjustment for conventional CVR factors. FMD was lower in SCT subjects versus controls (% mean ± SD, 2.7 ± 2.3 vs. 6.1 ± 2.3, p = 0.005). In vitro studies showed T3 increased early apoptosis and reduced eNOS expression in PACs. Conclusions: In conclusion, SCT is associated with reduced cEPC count and FMD, confirming increased CVR in SCT. Future outcome trials are required to examine if treatment of this subclinical hyperactive state improves cardiovascular outcome. Clinical Trial Registration: http://www.controlled-trials.com/isrctn/, identifier ISRCTN70334066.


Asunto(s)
Enfermedades Cardiovasculares , Células Progenitoras Endoteliales , Tirotoxicosis , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Células Progenitoras Endoteliales/metabolismo , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Factores de Riesgo , Tirotoxicosis/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
2.
Nat Cell Biol ; 23(4): 413-423, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33795871

RESUMEN

Endothelial cells (ECs) adapt their metabolism to enable the growth of new blood vessels, but little is known how ECs regulate metabolism to adopt a quiescent state. Here, we show that the metabolite S-2-hydroxyglutarate (S-2HG) plays a crucial role in the regulation of endothelial quiescence. We find that S-2HG is produced in ECs after activation of the transcription factor forkhead box O1 (FOXO1), where it limits cell cycle progression, metabolic activity and vascular expansion. FOXO1 stimulates S-2HG production by inhibiting the mitochondrial enzyme 2-oxoglutarate dehydrogenase. This inhibition relies on branched-chain amino acid catabolites such as 3-methyl-2-oxovalerate, which increase in ECs with activated FOXO1. Treatment of ECs with 3-methyl-2-oxovalerate elicits S-2HG production and suppresses proliferation, causing vascular rarefaction in mice. Our findings identify a metabolic programme that promotes the acquisition of a quiescent endothelial state and highlight the role of metabolites as signalling molecules in the endothelium.


Asunto(s)
Proliferación Celular/genética , Células Endoteliales/metabolismo , Proteína Forkhead Box O1/genética , Neovascularización Fisiológica/genética , Animales , Regulación de la Expresión Génica/genética , Glutaratos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Metabolismo/genética , Ratones , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal/genética , Valeratos/metabolismo
3.
Cardiovasc Res ; 113(6): 681-691, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28453731

RESUMEN

AIMS: Vessel maturation involves the recruitment of mural cells such as pericytes and smooth muscle cells. Laminar shear stress is a major trigger for vessel maturation, but the molecular mechanisms by which shear stress affects recruitment of pericytes are unclear. MicroRNAs (miRs) are small non-coding RNAs, which post-transcriptionally control gene expression. The aim of the present study was to unveil the mechanism by which shear stress-regulated microRNAs contribute to vessel maturation. METHODS AND RESULTS: Here, we show that laminar shear stress increased miR-27a and miR-27b expression in vitro and in ex vivo in mouse femoral artery explants. Overexpression of miR-27b in endothelial cells increased pericyte adhesion and pericyte recruitment in vitro. In vitro barrier function of endothelial-pericyte co-cultures was augmented by miR-27b overexpression, whereas inhibition of miR-27a/b reduced adhesion and pericyte coverage and decreased barrier functions. In vivo, pharmacological inhibition of miR-27a/b by locked nucleic acid antisense oligonucleotides significantly reduced pericyte coverage and increased water content in the murine uterus. MiR-27b overexpression repressed semaphorins (SEMA), which mediate repulsive signals, and the vessel destabilizing human but not mouse Angiopoietin-2 (Ang-2). Silencing of SEMA6A and SEMA6D rescued the reduced pericyte adhesion by miR-27 inhibition. Furthermore, inhibition of SEMA6D increased barrier function of an endothelial-pericyte co-culture in vitro. CONCLUSION: The present study demonstrates for the first time that shear stress-regulated miR-27b promotes the interaction of endothelial cells with pericytes, partly by repressing SEMA6A and SEMA6D.


Asunto(s)
Encéfalo/irrigación sanguínea , Comunicación Celular , Movimiento Celular , Células Endoteliales/metabolismo , Mecanotransducción Celular , Microvasos/metabolismo , Pericitos/metabolismo , Semaforinas/metabolismo , Animales , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Interferencia de ARN , Semaforinas/genética , Estrés Mecánico , Transfección
4.
Arterioscler Thromb Vasc Biol ; 36(7): 1425-33, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27199445

RESUMEN

OBJECTIVE: Jumonji C (JmjC) domain-containing proteins modify histone and nonhistone proteins thereby controlling cellular functions. However, the role of JmjC proteins in angiogenesis is largely unknown. Here, we characterize the expression of JmjC domain-containing proteins after inducing endothelial differentiation of murine embryonic stem cells and study the function of JmjC domain-only proteins in endothelial cell (EC) functions. APPROACH AND RESULTS: We identified a large number of JmjC domain-containing proteins regulated by endothelial differentiation of murine embryonic stem cells. Among the family of JmjC domain-only proteins, Jmjd8 was significantly upregulated on endothelial differentiation. Knockdown of Jmjd8 in ECs significantly decreased in vitro network formation and sprouting in the spheroid assay. JMJD8 is exclusively detectable in the cytoplasm, excluding a function as a histone-modifying enzyme. Mass spectrometry analysis revealed JMJD8-interacting proteins with known functions in cellular metabolism like pyruvate kinase M2. Accordingly, knockdown of pyruvate kinase M2 in human umbilical vein ECs decreased endothelial sprouting in the spheroid assay. Knockdown of JMJD8 caused a reduction of EC metabolism as measured by Seahorse Bioscience extracellular flux analysis. Conversely, overexpression of JMJD8 enhanced cellular oxygen consumption rate of ECs, reflecting an increased mitochondrial respiration. CONCLUSIONS: Jmjd8 is upregulated during endothelial differentiation and regulates endothelial sprouting and metabolism by interacting with pyruvate kinase M2.


Asunto(s)
Proteínas Portadoras/metabolismo , Diferenciación Celular , Células Madre Embrionarias/enzimología , Células Progenitoras Endoteliales/enzimología , Metabolismo Energético , Células Endoteliales de la Vena Umbilical Humana/enzimología , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas de la Membrana/metabolismo , Neovascularización Fisiológica , Piruvato Quinasa/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Proteínas Portadoras/genética , Respiración de la Célula , Células HEK293 , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Proteínas de la Membrana/genética , Ratones , Mitocondrias/enzimología , Consumo de Oxígeno , Unión Proteica , Piruvato Quinasa/genética , Interferencia de ARN , Transducción de Señal , Hormonas Tiroideas/genética , Factores de Tiempo , Transfección , Regulación hacia Arriba , Proteínas de Unión a Hormona Tiroide
5.
PLoS One ; 10(12): e0145777, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26717516

RESUMEN

The flow-responsive transcription factor Krüppel-like factor 2 (KLF2) maintains an anti-coagulant, anti-inflammatory endothelium with sufficient nitric oxide (NO)-bioavailability. In this study, we aimed to explore, both in vitro and in human vascular tissue, expression of the NO-transporting transmembrane pore aquaporin-1 (AQP1) and its regulation by atheroprotective KLF2 and atherogenic inflammatory stimuli. In silico analysis of gene expression profiles from studies that assessed the effects of KLF2 overexpression in vitro and atherosclerosis in vivo on endothelial cells, identifies AQP1 as KLF2 downstream gene with elevated expression in the plaque-free vessel wall. Biomechanical and pharmaceutical induction of KLF2 in vitro is accompanied by induction of AQP1. Chromosome immunoprecipitation (CHIP) confirms binding of KLF2 to the AQP1 promoter. Inflammatory stimulation of endothelial cells leads to repression of AQP1 transcription, which is restrained by KLF2 overexpression. Immunohistochemistry reveals expression of aquaporin-1 in non-activated endothelium overlying macrophage-poor intimae, irrespective whether these intimae are characterized as being plaque-free or as containing advanced plaque. We conclude that AQP1 expression is subject to KLF2-mediated positive regulation by atheroprotective shear stress and is downregulated under inflammatory conditions both in vitro and in vivo. Thus, endothelial expression of AQP1 characterizes the atheroprotected, non-inflamed vessel wall. Our data provide support for a continuous role of KLF2 in stabilizing the vessel wall via co-temporal expression of eNOS and AQP1 both preceding and during the pathogenesis of atherosclerosis.


Asunto(s)
Acuaporina 1/metabolismo , Endotelio Vascular/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Óxido Nítrico/metabolismo , Acuaporina 1/genética , Transporte Biológico/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inmunohistoquímica , Mediadores de Inflamación/farmacología , Factores de Transcripción de Tipo Kruppel/genética , Placa Aterosclerótica/patología , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Mecánico , Transcripción Genética/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología
6.
J Mol Cell Cardiol ; 88: 111-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26456066

RESUMEN

MicroRNAs are endogenously expressed small noncoding RNAs that regulate gene expression. Laminar blood flow induces atheroprotective gene expression in endothelial cells (ECs) in part by upregulating the transcription factor KLF2. Here, we identified KLF2- and flow-responsive miRs that affect gene expression in ECs. Bioinformatic assessment of mRNA expression patterns identified the miR-30-5p seed sequence to be highly enriched in mRNAs that are downregulated by KLF2. Indeed, KLF2 overexpression and shear stress stimulation in vitro and in vivo increased the expression of miR-30-5p family members. Furthermore, we identified angiopoietin 2 (Ang2) as a target of miR-30. MiR-30 overexpression reduces Ang2 levels, whereas miR-30 inhibition by LNA-antimiRs induces Ang2 expression. Consistently, miR-30 reduced basal and TNF-α-induced expression of the inflammatory cell­cell adhesion molecules E-selectin, ICAM1 and VCAM1, which was rescued by stimulation with exogenous Ang2. In summary, KLF2 and shear stress increase the expression of the miR-30-5p family which acts in an anti-inflammatory manner in ECs by impairing the expression of Ang2 and inflammatory cell­cell adhesion molecules. The upregulation of miR-30-5p family members may contribute to the atheroprotective effects of shear stress.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , MicroARNs/genética , ARN Mensajero/genética , Estrés Mecánico , Proteínas de Transporte Vesicular/genética , Adenoviridae/genética , Secuencia de Bases , Biología Computacional , Selectina E/genética , Selectina E/metabolismo , Regulación de la Expresión Génica , Hemorreología , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Lentivirus/genética , MicroARNs/metabolismo , Datos de Secuencia Molecular , ARN Mensajero/metabolismo , Transducción de Señal , Transducción Genética , Factor de Necrosis Tumoral alfa/farmacología , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo , Proteínas de Transporte Vesicular/metabolismo
7.
Arterioscler Thromb Vasc Biol ; 35(1): 137-45, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25359860

RESUMEN

OBJECTIVE: Cellular metabolism was recently shown to regulate endothelial cell phenotype profoundly. Whether the atheroprotective biomechanical stimulus elicited by laminar shear stress modulates endothelial cell metabolism is not known. APPROACH AND RESULTS: Here, we show that laminar flow exposure reduced glucose uptake and mitochondrial content in endothelium. Shear stress-mediated reduction of endothelial metabolism was reversed by silencing the flow-sensitive transcription factor Krüppel-like factor 2 (KLF2). Endothelial-specific deletion of KLF2 in mice induced glucose uptake in endothelial cells of perfused hearts. KLF2 overexpression recapitulates the inhibitory effects on endothelial glycolysis elicited by laminar flow, as measured by Seahorse flux analysis and glucose uptake measurements. RNA sequencing showed that shear stress reduced the expression of key glycolytic enzymes, such as 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3 (PFKFB3), phosphofructokinase-1, and hexokinase 2 in a KLF2-dependent manner. Moreover, KLF2 represses PFKFB3 promoter activity. PFKFB3 knockdown reduced glycolysis, and overexpression increased glycolysis and partially reversed the KLF2-mediated reduction in glycolysis. Furthermore, PFKFB3 overexpression reversed KLF2-mediated reduction in angiogenic sprouting and network formation. CONCLUSIONS: Our data demonstrate that shear stress-mediated repression of endothelial cell metabolism via KLF2 and PFKFB3 controls endothelial cell phenotype.


Asunto(s)
Células Endoteliales/enzimología , Metabolismo Energético , Factores de Transcripción de Tipo Kruppel/metabolismo , Mecanotransducción Celular , Fosfofructoquinasa-2/metabolismo , Animales , Fenómenos Biomecánicos , Células Cultivadas , Regulación hacia Abajo , Glucosa/metabolismo , Glucólisis , Células Endoteliales de la Vena Umbilical Humana/enzimología , Factores de Transcripción de Tipo Kruppel/deficiencia , Factores de Transcripción de Tipo Kruppel/genética , Ratones Noqueados , Mitocondrias/metabolismo , Miocardio/metabolismo , Neovascularización Fisiológica , Fenotipo , Fosfofructoquinasa-2/genética , Regiones Promotoras Genéticas , Interferencia de ARN , Flujo Sanguíneo Regional , Estrés Mecánico , Factores de Tiempo , Transfección
8.
Circ Res ; 114(9): 1389-97, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24602777

RESUMEN

RATIONALE: The human genome harbors a large number of sequences encoding for RNAs that are not translated but control cellular functions by distinct mechanisms. The expression and function of the longer transcripts namely the long noncoding RNAs in the vasculature are largely unknown. OBJECTIVE: Here, we characterized the expression of long noncoding RNAs in human endothelial cells and elucidated the function of the highly expressed metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). METHODS AND RESULTS: Endothelial cells of different origin express relative high levels of the conserved long noncoding RNAs MALAT1, taurine upregulated gene 1 (TUG1), maternally expressed 3 (MEG3), linc00657, and linc00493. MALAT1 was significantly increased by hypoxia and controls a phenotypic switch in endothelial cells. Silencing of MALAT1 by small interfering RNAs or GapmeRs induced a promigratory response and increased basal sprouting and migration, whereas proliferation of endothelial cells was inhibited. When angiogenesis was further stimulated by vascular endothelial growth factor, MALAT1 small interfering RNAs induced discontinuous sprouts indicative of defective proliferation of stalk cells. In vivo studies confirmed that genetic ablation of MALAT1 inhibited proliferation of endothelial cells and reduced neonatal retina vascularization. Pharmacological inhibition of MALAT1 by GapmeRs reduced blood flow recovery and capillary density after hindlimb ischemia. Gene expression profiling followed by confirmatory quantitative reverse transcriptase-polymerase chain reaction demonstrated that silencing of MALAT1 impaired the expression of various cell cycle regulators. CONCLUSIONS: Silencing of MALAT1 tips the balance from a proliferative to a migratory endothelial cell phenotype in vitro, and its genetic deletion or pharmacological inhibition reduces vascular growth in vivo.


Asunto(s)
Células Endoteliales/metabolismo , Isquemia/metabolismo , Músculo Esquelético/irrigación sanguínea , ARN Largo no Codificante/metabolismo , Neovascularización Retiniana/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Miembro Posterior , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Isquemia/genética , Isquemia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Fisiológica , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Interferencia de ARN , ARN Largo no Codificante/genética , Neovascularización Retiniana/genética , Neovascularización Retiniana/fisiopatología , Transducción de Señal , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...