Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Mol Cell Cardiol ; 172: 26-40, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35952391

RESUMEN

The pleiotropic Ca2+/calmodulin-dependent phosphatase calcineurin is a key regulator of pathological cardiac myocyte hypertrophy. The selective activation of hypertrophic calcineurin signaling under stress conditions has been attributed to compartmentation of Ca2+ signaling in cardiac myocytes. Here, perinuclear signalosomes organized by the scaffold protein muscle A-Kinase Anchoring Protein ß (mAKAPß/AKAP6ß) are shown to orchestrate local Ca2+ transients, inducing calcineurin-dependent NFATc nuclear localization and myocyte hypertrophy in response to ß-adrenergic receptor activation. Fluorescent biosensors for Ca2+ and calcineurin and protein kinase A (PKA) activity, both diffusely expressed and localized by nesprin-1α to the nuclear envelope, are used to define an autonomous mAKAPß signaling compartment in adult and neonatal rat ventricular myocytes. Notably, ß-adrenergic-stimulated perinuclear Ca2+ and PKA and CaN activity transients depended upon mAKAPß expression, while Ca2+ elevation and PKA and CaN activity in the cytosol were mAKAPß independent. Buffering perinuclear cAMP and Ca2+ prevented calcineurin-dependent NFATc nuclear translocation and myocyte hypertrophy, without affecting cardiac myocyte contractility. Additional findings suggest that the perinuclear Ca2+ transients were mediated by signalosome-associated ryanodine receptors regulated by local PKA phosphorylation. These results demonstrate the existence of a functionally independent Ca2+ signaling compartment in the cardiac myocyte regulating hypertrophy and provide a premise for targeting mAKAPß signalosomes to prevent selectively cardiac hypertrophy in disease.


Asunto(s)
Calcio , Miocitos Cardíacos , Ratas , Animales , Miocitos Cardíacos/metabolismo , Calcio/metabolismo , Calcineurina/metabolismo , Cardiomegalia/patología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Señalización del Calcio
2.
Function (Oxf) ; 3(3): zqac020, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620477

RESUMEN

ß-adrenergic receptor (ß-AR) signaling in cardiac myocytes is central to cardiac function, but spatiotemporal activation within myocytes is unresolved. In rabbit ventricular myocytes, ß-AR agonists or high extracellular [Ca] were applied locally at one end, to measure ß-AR signal propagation as Ca-transient (CaT) amplitude and sarcoplasmic reticulum (SR) Ca uptake. High local [Ca]o, increased CaT amplitude under the pipette faster than did ISO, but was also more spatially restricted. Local isoproterenol (ISO) or norepinephrine (NE) increased CaT amplitude and SR Ca uptake, that spread along the myocyte to the unexposed end. Thus, local [Ca]i decline kinetics reflect spatio-temporal progression of ß-AR end-effects in myocytes. To test whether intracellular ß-ARs contribute to this response, we used ß-AR-blockers that are membrane permeant (propranolol) or not (sotalol). Propranolol completely blocked NE-dependent CaT effects. However, blocking surface ß-ARs only (sotalol) suppressed only ∼50% of the NE-induced increase in CaT peak and rate of [Ca]i decline, but these changes spread more gradually than NE alone. We also tested whether A-kinase anchoring protein 7γ (AKAP7γ; that interacts with phospholamban) is mobile, such that it might contribute to intracellular spatial propagation of ß-AR signaling. We found AKAP7γ to be highly mobile using fluorescence recovery after photobleach of GFP tagged AKAP7γ, and that PKA activation accelerated AKAP7γ-GFP wash-out upon myocyte saponin-permeabilization, suggesting increased AKAP7γ mobility. We conclude that local ß-AR activation can activate SR Ca uptake at remote myocyte sites, and that intracellular ß-AR and AKAP7γ mobility may play a role in this spread of activation.


Asunto(s)
Calcio , Miocitos Cardíacos , Animales , Conejos , Adrenérgicos/metabolismo , Calcio/metabolismo , Señalización del Calcio , Calcio de la Dieta/metabolismo , Isoproterenol/farmacología , Propranolol/metabolismo , Receptores Adrenérgicos beta , Sotalol/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
3.
eNeuro ; 8(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33495246

RESUMEN

The second messenger cyclic adenosine monophosphate (cAMP) is important for the regulation of neuronal structure and function, including neurite extension. A perinuclear cAMP compartment organized by the scaffold protein muscle A-kinase anchoring protein α (mAKAPα/AKAP6α) is sufficient and necessary for axon growth by rat hippocampal neurons in vitro Here, we report that cAMP at mAKAPα signalosomes is regulated by local Ca2+ signaling that mediates activity-dependent cAMP elevation within that compartment. Simultaneous Forster resonance energy transfer (FRET) imaging using the protein kinase A (PKA) activity reporter AKAR4 and intensiometric imaging using the RCaMP1h fluorescent Ca2+ sensor revealed that membrane depolarization by KCl selectively induced activation of perinuclear PKA activity. Activity-dependent perinuclear PKA activity was dependent on expression of the mAKAPα scaffold, while both perinuclear Ca2+ elevation and PKA activation were dependent on voltage-dependent L-type Ca2+ channel activity. Importantly, chelation of Ca2+ by a nuclear envelope-localized parvalbumin fusion protein inhibited both activity-induced perinuclear PKA activity and axon elongation. Together, this study provides evidence for a model in which a neuronal perinuclear cAMP compartment is locally regulated by activity-dependent Ca2+ influx, providing local control for the enhancement of neurite extension.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Ratas , Transducción de Señal
4.
J Physiol ; 598(14): 3029-3042, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-30488951

RESUMEN

The ubiquitous Ca2+ /calmodulin-dependent phosphatase calcineurin is a key regulator of pathological cardiac hypertrophy whose therapeutic targeting in heart disease has been elusive due to its role in other essential biological processes. Calcineurin is targeted to diverse intracellular compartments by association with scaffold proteins, including by multivalent A-kinase anchoring proteins (AKAPs) that bind protein kinase A and other important signalling enzymes determining cardiac myocyte function and phenotype. Calcineurin anchoring by AKAPs confers specificity to calcineurin function in the cardiac myocyte. Targeting of calcineurin 'signalosomes' may provide a rationale for inhibiting the phosphatase in disease.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Calcineurina , Proteínas de Anclaje a la Quinasa A/metabolismo , Calcineurina/metabolismo , Cardiomegalia/tratamiento farmacológico , Amigos , Humanos , Transducción de Señal
5.
J Biol Chem ; 294(7): 2543-2554, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30523159

RESUMEN

Myocyte enhancer factor 2 (MEF2) transcription factors are key regulators of the development and adult phenotype of diverse tissues, including skeletal and cardiac muscles. Controlled by multiple post-translational modifications, MEF2D is an effector for the Ca2+/calmodulin-dependent protein phosphatase calcineurin (CaN, PP2B, and PPP3). CaN-catalyzed dephosphorylation promotes the desumoylation and acetylation of MEF2D, increasing its transcriptional activity. Both MEF2D and CaN bind the scaffold protein muscle A-kinase-anchoring protein ß (mAKAPß), which is localized to the nuclear envelope, such that C2C12 skeletal myoblast differentiation and neonatal rat ventricular myocyte hypertrophy are inhibited by mAKAPß signalosome targeting. Using immunoprecipitation and DNA-binding assays, we now show that the formation of mAKAPß signalosomes is required for MEF2D dephosphorylation, desumoylation, and acetylation in C2C12 cells. Reduced MEF2D phosphorylation was coupled to a switch from type IIa histone deacetylase to p300 histone acetylase binding that correlated with increased MEF2D-dependent gene expression and ventricular myocyte hypertrophy. Together, these results highlight the importance of mAKAPß signalosomes for regulating MEF2D activity in striated muscle, affirming mAKAPß as a nodal regulator in the myocyte intracellular signaling network.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Calcineurina/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal , Proteínas de Anclaje a la Quinasa A/genética , Animales , Calcineurina/genética , Línea Celular , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patología , Miocitos Cardíacos/patología , Fosforilación , Ratas
6.
J Mol Cell Cardiol ; 118: 13-25, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29522762

RESUMEN

Class IIa histone deacetylases (HDACs) are transcriptional repressors whose nuclear export in the cardiac myocyte is associated with the induction of pathological gene expression and cardiac remodeling. Class IIa HDACs are regulated by multiple, functionally opposing post-translational modifications, including phosphorylation by protein kinase D (PKD) that promotes nuclear export and phosphorylation by protein kinase A (PKA) that promotes nuclear import. We have previously shown that the scaffold protein muscle A-kinase anchoring protein ß (mAKAPß) orchestrates signaling in the cardiac myocyte required for pathological cardiac remodeling, including serving as a scaffold for both PKD and PKA. We now show that mAKAPß is a scaffold for HDAC5 in cardiac myocytes, forming signalosomes containing HDAC5, PKD, and PKA. Inhibition of mAKAPß expression attenuated the phosphorylation of HDAC5 by PKD and PKA in response to α- and ß-adrenergic receptor stimulation, respectively. Importantly, disruption of mAKAPß-HDAC5 anchoring prevented the induction of HDAC5 nuclear export by α-adrenergic receptor signaling and PKD phosphorylation. In addition, disruption of mAKAPß-PKA anchoring prevented the inhibition by ß-adrenergic receptor stimulation of α-adrenergic-induced HDAC5 nuclear export. Together, these data establish that mAKAPß signalosomes serve to bidirectionally regulate the nuclear-cytoplasmic localization of class IIa HDACs. Thus, the mAKAPß scaffold serves as a node in the myocyte regulatory network controlling both the repression and activation of pathological gene expression in health and disease, respectively.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Histona Desacetilasas/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas de Anclaje a la Quinasa A/química , Transporte Activo de Núcleo Celular/efectos de los fármacos , Adrenérgicos/farmacología , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Ratas , Transducción de Señal
7.
FEBS Lett ; 591(3): 459-467, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28100013

RESUMEN

The PKAL205R hotspot mutation has been implicated in Cushing's syndrome through hyperactive gain-of-function PKA signaling; however, its influence on substrate specificity has not been investigated. Here, we employ the Proteomic Peptide Library (ProPeL) approach to create high-resolution models for PKAWT and PKAL205R substrate specificity. We reveal that the L205R mutation reduces canonical hydrophobic preference at the substrate P + 1 position, and increases acidic preference in downstream positions. Using these models, we designed peptide substrates that exhibit altered selectivity for specific PKA variants, and demonstrate the feasibility of selective PKAL205R loss-of-function signaling. Through these results, we suggest that substrate rewiring may contribute to Cushing's syndrome disease etiology, and introduce a powerful new paradigm for investigating mutation-induced kinase substrate rewiring in human disease.


Asunto(s)
Síndrome de Cushing/enzimología , Síndrome de Cushing/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Mutación/genética , Secuencia de Aminoácidos , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Pruebas de Enzimas , Escherichia coli/metabolismo , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ingeniería de Proteínas , Especificidad por Sustrato
8.
J Signal Transduct ; 2015: 371626, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26417456

RESUMEN

A-kinase anchoring proteins (AKAPs) constitute a family of scaffolding proteins that contribute to spatiotemporal regulation of PKA-mediated phosphorylation events. In particular, AKAP7 is a family of alternatively spliced proteins that participates in cardiac calcium dynamics. Here, we demonstrate via pull-down from transfected cells and by direct protein-protein association that AKAP7γ self-associates. Self-association appears to be an isoform specific phenomenon, as AKAP7α did not associate with itself or with AKAP7γ. However, AKAP7γ did associate with AKAP7δ, suggesting the long isoforms of the AKAP can form heterodimers. Surface plasmon resonance found that the AKAP7γ self-association occurs via two high affinity binding sites with K D values in the low nanomolar range. Mapping of the binding sites by peptide array reveals that AKAP7γ interacts with itself through multiple regions. Photon counting histogram analysis (PCH) of AKAP7γ-EGFP expressed in HEK-293 cells confirmed that AKAP7γ-EGFP self-associates in a cellular context. Lastly, computational modeling of PKA dynamics within AKAP7γ complexes suggests that oligomerization may augment phosphorylation of scaffolded PKA substrates. In conclusion, our study reveals that AKAP7γ forms both homo- and heterodimers with the long isoforms of the AKAP and that this phenomenon could be an important step in mediating effective substrate phosphorylation in cellular microdomains.

9.
Cell Signal ; 27(9): 1807-15, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26027516

RESUMEN

Changes in heart rate and contractility in response to sympathetic stimulation occur via activation of cAMP dependent protein kinase A (PKA), leading to phosphorylation of numerous substrates that alter Ca(2+) cycling. Phosphorylation of these substrates is coordinated by A-kinase anchoring proteins (AKAPs), which recruit PKA to specific substrates [1]. Phosphorylation of the PKA substrate phospholamban (PLB) is a critical determinant of Ca(2+) re-entry into the sarcoplasmic reticulum and is coordinated by AKAP7δ/γ [2,3]. Here, we further these findings by showing that phosphorylation of PLB requires interaction with AKAP7δ/γ and that this interaction occurs only when PLB is unphosphorylated. Additionally, we find that two mutants of PLB (R9C and Δ14), which are associated with dilated cardiomyopathy in humans, prevent association with AKAP7δ/γ and display reduced phosphorylation in vitro. This finding implicates the AKAP7δ/γ-PLB interaction in the pathology of the disease phenotype. Further exploration of the AKAP7δ/γ-PLB association demonstrated a phosphorylation state-dependence of the interaction. Computational modeling revealed that this mode of interaction allows for small amounts of AKAP and PKA (100-200nM) to regulate the phosphorylation of large quantities of PLB (50µM). Our results confirm that AKAP7γ/δ binding to PLB is important for phosphorylation of PLB, and describe a novel phosphorylation state-dependent binding mechanism that explains how phosphorylation of highly abundant PKA substrates can be regulated by AKAPs present at ~100-200 fold lower concentrations.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al Calcio/metabolismo , Mioblastos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Unión al Calcio/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Mutación , Fosforilación/genética , Ratas , Ratas Sprague-Dawley , Retículo Sarcoplasmático/genética
11.
J Biol Chem ; 289(4): 2353-60, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24302730

RESUMEN

Scaffold proteins localize two or more signaling enzymes in close proximity to their downstream effectors. A-kinase-anchoring proteins (AKAPs) are a canonical family of scaffold proteins known to bind protein kinase A (PKA) and other enzymes. Several AKAPs have been shown to accelerate, amplify, and specify signal transduction to dynamically regulate numerous cellular processes. However, there is little theory available to mechanistically explain how signaling on protein scaffolds differs from solution biochemistry. In our present study, we propose a novel kinetic mechanism for enzymatic reactions on protein scaffolds to explain these phenomena, wherein the enzyme-substrate-scaffold complex undergoes stochastic state switching to reach an active state. This model predicted anchored enzymatic reactions to be accelerated, amplified, and insulated from inhibition compared with those occurring in solution. We exploited a direct interaction between protein kinase C (PKC) and AKAP7α as a model to validate these predictions experimentally. Using a genetically encoded PKC activity reporter, we found that both the strength and speed of substrate phosphorylation were enhanced by AKAP7α. PKC tethered to AKAP7α was less susceptible to inhibition from the ATP-competitive inhibitor Gö6976 and the substrate-competitive inhibitor PKC 20-28, but not the activation-competitive inhibitor calphostin C. Model predictions and experimental validation demonstrated that insulation is a general property of scaffold tethering. Sensitivity analysis indicated that these findings may be applicable to many other scaffolds as well. Collectively, our findings provide theoretical and experimental evidence that scaffold proteins can amplify, accelerate, and insulate signal transduction.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/química , Proteínas de la Membrana/química , Modelos Químicos , Proteína Quinasa C/química , Transducción de Señal , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Adenosina Trifosfato/química , Animales , Carbazoles/química , Chlorocebus aethiops , Inhibidores Enzimáticos/química , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Naftalenos/química , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Estructura Terciaria de Proteína , Células Vero
12.
Exp Cell Res ; 319(4): 447-54, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23261540

RESUMEN

The calcium/calmodulin-dependent protein phosphatase calcineurin is required for the induction of transcriptional events that initiate and promote myogenic differentiation. An important effector for calcineurin in striated muscle is the transcription factor myocyte enhancer factor 2 (MEF2). The targeting of the enzyme and substrate to specific intracellular compartments by scaffold proteins often confers specificity in phosphatase activity. We now show that the scaffolding protein mAKAP organizes a calcineurin/MEF2 signaling complex in myocytes, regulating gene transcription. A calcineurin/mAKAP/MEF2 complex can be isolated from C2C12 cells and cardiac myocytes, and the calcineurin/MEF2 association is dependent on mAKAP expression. We have identified a peptide comprising the calcineurin binding domain in mAKAP that can disrupt the binding of the phosphatase to the scaffold in vivo. Dominant interference of calcineurin/mAKAP binding blunts the increase in MEF2 transcriptional activity seen during myoblast differentiation, as well as the expression of endogenous MEF2-target genes. Furthermore, disruption of calcineurin binding to mAKAP in cardiac myocytes inhibits adrenergic-induced cellular hypertrophy. Together these data illustrate the importance of calcineurin anchoring by the mAKAP scaffold for MEF2 regulation.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/fisiología , Calcineurina/fisiología , Factores Reguladores Miogénicos/metabolismo , Transcripción Genética , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Animales Recién Nacidos , Calcineurina/genética , Calcineurina/metabolismo , Células Cultivadas , Regulación de la Expresión Génica , Factores de Transcripción MEF2 , Ratones , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/fisiología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/fisiología , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley
13.
Biochem J ; 446(2): 301-9, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22670899

RESUMEN

The regulation of kinases by scaffolding proteins greatly contributes to the fidelity of signal transduction. In the present study, we explored an interaction between the ubiquitous enzyme PKC (protein kinase C) and the scaffolding protein AKAP7 (A-kinase-anchoring protein 7). Using protein biochemistry and surface plasmon resonance approaches, we demonstrate that both AKAP7γ and AKAP7α are capable of high-affinity interactions with multiple isoenzymes of PKC. Furthermore, this interaction is achieved via multi-site binding on both proteins. FRET (fluorescence resonance energy transfer) analysis using a PKC activity reporter suggests that anchoring of the kinase within AKAP7 complexes enhances the phosphorylation of substrate proteins. Finally, we determined using FRAP (fluorescence recovery after photobleaching) and virtual modelling that AKAP7 restricts the mobility of PKC within cells by tethering it to subcellular compartments. Collectively, the results of the present study suggests that AKAP7 could play an integral role in dictating PKC localization and function in tissues where the two proteins are co-expressed.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C/metabolismo , Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/genética , Animales , Dominio Catalítico , Chlorocebus aethiops , Difusión , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/genética , Enzimas Inmovilizadas/metabolismo , Células HEK293 , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosforilación , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinasa C/química , Proteína Quinasa C/genética , Proteína Quinasa C beta , Proteína Quinasa C-alfa/química , Proteína Quinasa C-alfa/genética , Transporte de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Células Vero
14.
Cell Signal ; 24(8): 1496-503, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22484155

RESUMEN

Differentiation of skeletal myoblast cells to functional myotubes involves highly regulated transcriptional dynamics. The myocyte enhancer factor 2 (MEF2) transcription factors are critical to this process, synergizing with the master regulator MyoD to promote muscle specific gene transcription. MEF2 is extensively regulated by myogenic stimuli, both transcriptionally and post-translationally, but to date there has been little progress in understanding how signals upstream of MEF2 are coordinated to produce a coherent response. In this study, we define a novel interaction between the muscle A-kinase anchoring protein (mAKAP) and MEF2 in skeletal muscle. Discrete domains of MEF2 and mAKAP bind directly. Their interaction was exploited to probe the function of mAKAP-tethered MEF2 during myogenic differentiation. Dominant interference of MEF2/mAKAP binding was sufficient to block MEF2 activation during the early stages of differentiation. Furthermore, extended expression of this disrupting domain effectively blocked myogenic differentiation, halting the formation of myotubes and decreasing expression of several differentiation markers. This study expands our understanding of the regulation of MEF2 in skeletal muscle and identifies the mAKAP scaffold as a facilitator of MEF2 transcription and myogenic differentiation.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Diferenciación Celular , Factores de Transcripción MEF2/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Animales , Proliferación Celular , Células HEK293 , Humanos , Ratones , Células Tumorales Cultivadas
15.
Am J Physiol Heart Circ Physiol ; 301(5): H1742-53, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21856912

RESUMEN

The pleiotropic cyclic nucleotide cAMP is the primary second messenger responsible for autonomic regulation of cardiac inotropy, chronotropy, and lusitropy. Under conditions of prolonged catecholaminergic stimulation, cAMP also contributes to the induction of both cardiac myocyte hypertrophy and apoptosis. The formation of localized, multiprotein complexes that contain different combinations of cAMP effectors and regulatory enzymes provides the architectural infrastructure for the specialization of the cAMP signaling network. Scaffolds that bind protein kinase A are called "A-kinase anchoring proteins" (AKAPs). In this review, we discuss recent advances in our understanding of how PKA is compartmentalized within the cardiac myocyte by AKAPs and how AKAP complexes modulate cardiac function in both health and disease.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Cardiopatías/enzimología , Miocardio/enzimología , Sistemas de Mensajero Secundario , Animales , Fármacos Cardiovasculares/uso terapéutico , Cardiopatías/tratamiento farmacológico , Cardiopatías/fisiopatología , Humanos , Sistemas de Mensajero Secundario/efectos de los fármacos
16.
J Cardiovasc Pharmacol ; 58(4): 354-62, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21562429

RESUMEN

Directed protein phosphorylation is indisputably critical for a multitude of cellular processes. A growing body of research demonstrates A kinase anchoring proteins (AKAPs) to mediate a significant number of phosphorylation events in the heart. By acting as molecular tethers for the regulatory subunit of protein kinase A, AKAPs focus kinase activity onto specific substrate. In the time since their discovery, the AKAP model has evolved in appreciation of the broader role these scaffolds play in coordinating multiple signaling enzymes to efficiently regulate dynamic cellular processes. The focus of this review is on the emerging role of AKAPs in regulating the 3 main cardiac phosphatases: Protein Phosphatase 1 by AKAP18 and Yotiao, and Protein Phosphatases 2A and 2B by muscle specific A-kinase anchoring protein.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Calcineurina/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 2/metabolismo , Animales , Proteínas del Citoesqueleto/metabolismo , Corazón/fisiología , Humanos , Proteínas de la Membrana/metabolismo , Fosforilación/fisiología , Transducción de Señal/fisiología
17.
Biochemistry ; 50(23): 5279-91, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21561082

RESUMEN

The ubiquitously expressed and highly promiscuous protein phosphatase 1 (PP1) regulates many cellular processes. Targeting PP1 to specific locations within the cell allows for the regulation of PP1 by conferring substrate specificity. In the present study, we identified AKAP79 as a novel PP1 regulatory subunit. Immunoprecipitaiton of the AKAP from rat brain extract found that the PP1 catalytic subunit copurified with the anchoring protein. This is a direct interaction, demonstrated by pulldown experiments using purified proteins. Interestingly, the addition of AKAP79 to purified PP1 catalytic subunit decreased phosphatase activity with an IC(50) of 811 ± 0.56 nM of the anchoring protein. Analysis of AKAP79 identified a PP1 binding site that conformed to a consensus PP1 binding motif (FxxR/KxR/K) in the first 44 amino acids of the anchoring protein. This was confirmed when a peptide mimicking this region of AKAP79 was able to bind PP1 by both pulldown assay and surface plasmon resonance. However, PP1 was still able to bind to AKAP79 upon deletion of this region, suggesting additional sites of contact between the anchoring protein and the phosphatase. Importantly, this consensus PP1 binding motif was found not to be responsible for PP1 inhibition, but rather enhanced phosphatase activity, as deletion of this domain resulted in an increased inhibition of PP1 activity. Instead, a second interaction domain localized to residues 150-250 of AKAP79 was required for the inhibition of PP1. However, the inhibitory actions of AKAP79 on PP1 are substrate dependent, as the anchoring protein did not inhibit PP1 dephosphorylation of phospho-PSD-95, a substrate found in AKAP79 complexes in the brain. These combined observations suggest that AKAP79 acts as a PP1 regulatory subunit that can direct PP1 activity toward specific targets in the AKAP79 complex.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/química , Proteína Fosfatasa 1/química , Proteínas de Anclaje a la Quinasa A/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Catálisis , Células Cultivadas , Datos de Secuencia Molecular , Proteína Fosfatasa 1/metabolismo , Estructura Terciaria de Proteína , Ratas , Resonancia por Plasmón de Superficie
18.
Mol Pharmacol ; 79(3): 533-40, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21149637

RESUMEN

Inhibitor-1 (I-1) is phosphorylated on threonine residue 35 (Thr35) by the cAMP-dependent protein kinase (PKA), inducing the potent inhibition of the serine-threonine-specific protein phosphatase 1 (PP1). We now report that the formation of a signaling complex containing PKA and I-1 by the A-kinase anchoring protein 18 (AKAP18) facilitates this regulation in cells. AKAP18 directly bound I-1, and AKAP18/I-1 complexes were isolated from both rat heart extract and transfected heterologous cells. It is noteworthy that prevention of PKA binding to the AKAP18 scaffold decreased I-1 phosphorylation by 48% in cells. Moreover, the I-1 target PP1 was also associated with AKAP18 complexes. The cAMP-mediated inhibition of phosphatase activity was contingent on PKA binding to the scaffold. These observations reveal an additional level of complexity in PP1 regulation because of its association with AKAP18 multimolecular signaling complexes and suggest that targeting of AKAP18 complexes may be an alternative method to alter phosphatase activity and modulate specific substrate dephosphorylation.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/fisiología , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Inmunoprecipitación , Miocardio/metabolismo , Fosforilación , Isoformas de Proteínas/metabolismo , Ratas , Transducción de Señal/fisiología
19.
J Biol Chem ; 285(15): 11078-86, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20106966

RESUMEN

The concentration of the second messenger cAMP is tightly controlled in cells by the activity of phosphodiesterases. We have previously described how the protein kinase A-anchoring protein mAKAP serves as a scaffold for the cAMP-dependent protein kinase PKA and the cAMP-specific phosphodiesterase PDE4D3 in cardiac myocytes. PKA and PDE4D3 constitute a negative feedback loop whereby PKA-catalyzed phosphorylation and activation of PDE4D3 attenuate local cAMP levels. We now show that protein phosphatase 2A (PP2A) associated with mAKAP complexes is responsible for reversing the activation of PDE4D3 by catalyzing the dephosphorylation of PDE4D3 serine residue 54. Mapping studies reveal that a C-terminal mAKAP domain (residues 2085-2319) binds PP2A. Binding to mAKAP is required for PP2A function, such that deletion of the C-terminal domain enhances both base-line and forskolin-stimulated PDE4D3 activity. Interestingly, PP2A holoenzyme associated with mAKAP complexes in the heart contains the PP2A targeting subunit B56delta. Like PDE4D3, B56delta is a PKA substrate, and PKA phosphorylation of mAKAP-bound B56delta enhances phosphatase activity 2-fold in the complex. Accordingly, expression of a B56delta mutant that cannot be phosphorylated by PKA results in increased PDE4D3 phosphorylation. Taken together, our findings demonstrate that PP2A associated with mAKAP complexes promotes PDE4D3 dephosphorylation, serving both to inhibit PDE4D3 in unstimulated cells and also to mediate a cAMP-induced positive feedback loop following adenylyl cyclase activation and B56delta phosphorylation. In general, PKA.PP2A.mAKAP complexes exemplify how protein kinases and phosphatases may participate in molecular signaling complexes to dynamically regulate localized intracellular signaling.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Regulación Enzimológica de la Expresión Génica , Proteína Fosfatasa 2/química , Animales , Línea Celular , AMP Cíclico/metabolismo , Retroalimentación Fisiológica , Humanos , Fosforilación , Unión Proteica , Mapeo de Interacción de Proteínas , Proteína Fosfatasa 2/metabolismo , Estructura Terciaria de Proteína , Ratas , Transducción de Señal
20.
IUBMB Life ; 59(3): 163-9, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17487687

RESUMEN

Cardiac hypertrophy is regulated by a large intracellular signal transduction network. Each of the many signaling pathways in this network contributes uniquely to the control of cell growth. In the last few years, it has become apparent that multimolecular signaling complexes or 'signalosomes' are important for mediating crosstalk between different signaling pathways. These complexes integrate upstream signals and control downstream effectors. In the cardiac myocyte, the protein mAKAPbeta serves as a scaffold for a large signalosome that is responsive to upstream cAMP, Ca(2+), and mitogen-activated protein kinase signaling. The mAKAPbeta signalosome is important for the control of NFATc transcription factor activity and for the overall induction of myocyte hypertrophy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cardiomegalia/metabolismo , Miocitos Cardíacos , Transducción de Señal/fisiología , Proteínas de Anclaje a la Quinasa A , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Calcineurina/metabolismo , Cardiomegalia/patología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Retroalimentación Fisiológica , Humanos , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA