Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(40): e2410594121, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39316053

RESUMEN

Gram-negative bacteria produce chaperone-usher pathway pili, which are extracellular protein fibers tipped with an adhesive protein that binds to a receptor with stereochemical specificity to determine host and tissue tropism. The outer-membrane usher protein, together with a periplasmic chaperone, assembles thousands of pilin subunits into a highly ordered pilus fiber. The tip adhesin in complex with its cognate chaperone activates the usher to allow extrusion across the outer membrane. The structural requirements to translocate the adhesin through the usher pore from the periplasm to the extracellular space remains incompletely understood. Here, we present a cryoelectron microscopy structure of a quaternary tip complex in the type 1 pilus system from Escherichia coli, which consists of the usher FimD, chaperone FimC, adhesin FimH, and the tip adapter FimF. In this structure, the usher FimD is caught in the act of secreting its cognate adhesin FimH. Comparison with previous structures depicting the adhesin either first entering or having completely exited the usher pore reveals remarkable structural plasticity of the two-domain adhesin during translocation. Moreover, a piliation assay demonstrated that the structural plasticity, enabled by a flexible linker between the two domains, is a prerequisite for adhesin translocation through the usher pore and thus pilus biogenesis. Overall, this study provides molecular details of adhesin translocation across the outer membrane and elucidates a unique conformational state adopted by the adhesin during stepwise secretion through the usher pore. This study elucidates fundamental aspects of FimH and usher dynamics critical in urinary tract infections and is leading to antibiotic-sparing therapeutics.

2.
Proc Natl Acad Sci U S A ; 121(39): e2409655121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39288182

RESUMEN

Klebsiella pneumoniae is an important pathogen causing difficult-to-treat urinary tract infections (UTIs). Over 1.5 million women per year suffer from recurrent UTI, reducing quality of life and causing substantial morbidity and mortality, especially in the hospital setting. Uropathogenic E. coli (UPEC) is the most prevalent cause of UTI. Like UPEC, K. pneumoniae relies on type 1 pili, tipped with the mannose-binding adhesin FimH, to cause cystitis. However, K. pneumoniae FimH is a poor binder of mannose, despite a mannose-binding pocket identical to UPEC FimH. FimH is composed of two domains that are in an equilibrium between tense (low-affinity) and relaxed (high-affinity) conformations. Substantial interdomain interactions in the tense conformation yield a low-affinity, deformed mannose-binding pocket, while domain-domain interactions are broken in the relaxed state, resulting in a high-affinity binding pocket. Using crystallography, we identified the structural basis by which domain-domain interactions direct the conformational equilibrium of K. pneumoniae FimH, which is strongly shifted toward the low-affinity tense state. Removal of the pilin domain restores mannose binding to the lectin domain, thus showing that poor mannose binding by K. pneumoniae FimH is not an inherent feature of the mannose-binding pocket. Phylogenetic analyses of K. pneumoniae genomes found that FimH sequences are highly conserved. However, we surveyed a collection of K. pneumoniae isolates from patients with long-term indwelling catheters and identified isolates that possessed relaxed higher-binding FimH variants, which increased K. pneumoniae fitness in bladder infection models, suggesting that long-term residence within the urinary tract may select for higher-binding FimH variants.


Asunto(s)
Proteínas Fimbrias , Klebsiella pneumoniae , Manosa , Infecciones Urinarias , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/genética , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Infecciones Urinarias/microbiología , Manosa/metabolismo , Humanos , Conformación Proteica , Adhesinas de Escherichia coli/metabolismo , Adhesinas de Escherichia coli/química , Adhesinas de Escherichia coli/genética , Sitios de Unión , Dominios Proteicos , Infecciones por Klebsiella/microbiología , Cristalografía por Rayos X , Modelos Moleculares , Adhesinas Bacterianas/metabolismo , Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , Unión Proteica , Femenino , Fimbrias Bacterianas/metabolismo
3.
Sci Adv ; 10(31): eadn7979, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093975

RESUMEN

We have developed GmPcides from a peptidomimetic dihydrothiazolo ring-fused 2-pyridone scaffold that has antimicrobial activities against a broad spectrum of Gram-positive pathogens. Here, we examine the treatment efficacy of GmPcides using skin and soft tissue infection (SSTI) and biofilm formation models by Streptococcus pyogenes. Screening our compound library for minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations identified GmPcide PS757 as highly active against S. pyogenes. Treatment of S. pyogenes biofilm with PS757 revealed robust efficacy against all phases of biofilm formation by preventing initial biofilm development, ceasing biofilm maturation and eradicating mature biofilm. In a murine model of S. pyogenes SSTI, subcutaneous delivery of PS757 resulted in reduced levels of tissue damage, decreased bacterial burdens, and accelerated rates of wound healing, which were associated with down-regulation of key virulence factors, including M protein and the SpeB cysteine protease. These data demonstrate that GmPcides show considerable promise for treating S. pyogenes infections.


Asunto(s)
Biopelículas , Pruebas de Sensibilidad Microbiana , Piridonas , Infecciones de los Tejidos Blandos , Infecciones Estreptocócicas , Streptococcus pyogenes , Streptococcus pyogenes/efectos de los fármacos , Animales , Infecciones de los Tejidos Blandos/tratamiento farmacológico , Infecciones de los Tejidos Blandos/microbiología , Biopelículas/efectos de los fármacos , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/microbiología , Ratones , Piridonas/farmacología , Piridonas/química , Antibacterianos/farmacología , Antibacterianos/química , Modelos Animales de Enfermedad , Tiazoles/farmacología , Tiazoles/química , Enfermedades Cutáneas Bacterianas/tratamiento farmacológico , Enfermedades Cutáneas Bacterianas/microbiología , Femenino , Cicatrización de Heridas/efectos de los fármacos , Humanos
4.
bioRxiv ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38463963

RESUMEN

Low-abundance members of microbial communities are difficult to study in their native habitats. This includes Escherichia coli, a minor, but common inhabitant of the gastrointestinal tract and opportunistic pathogen, including of the urinary tract, where it is the primary pathogen. While multi-omic analyses have detailed critical interactions between uropathogenic Escherichia coli (UPEC) and the bladder that mediate UTI outcome, comparatively little is known about UPEC in its pre-infection reservoir, partly due to its low abundance there (<1% relative abundance). To accurately and sensitively explore the genomes and transcriptomes of diverse E. coli in gastrointestinal communities, we developed E. coli PanSelect which uses a set of probes designed to specifically recognize and capture E. coli's broad pangenome from sequencing libraries. We demonstrated the ability of E. coli PanSelect to enrich, by orders of magnitude, sequencing data from diverse E. coli using a mock community and a set of human stool samples collected as part of a cohort study investigating drivers of recurrent urinary tract infections (rUTI). Comparisons of genomes and transcriptomes between E. coli residing in the gastrointestinal tracts of women with and without a history of rUTI suggest that rUTI gut E. coli are responding to increased levels of oxygen and nitrate, suggestive of mucosal inflammation, which may have implications for recurrent disease. E. coli PanSelect is well suited for investigations of native in vivo biology of E. coli in other environments where it is at low relative abundance, and the framework described here has broad applicability to other highly diverse, low abundance organisms.

5.
bioRxiv ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38260261

RESUMEN

We have developed GmPcides from a peptidomimetic dihydrothiazolo ring-fused 2-pyridone scaffold that have antimicrobial activities against a broad-spectrum of Gram-positive pathogens. Here we examine the treatment efficacy of GmPcides using skin and soft tissue infection (SSTI) and biofilm formation models by Streptococcus pyogenes. Screening our compound library for minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations identified GmPcide PS757 as highly active against S. pyogenes. Treatment of S. pyogenes biofilm with PS757 revealed robust efficacy against all phases of biofilm formation by preventing initial biofilm development, ceasing biofilm maturation and eradicating mature biofilm. In a murine model of S. pyogenes SSTI, subcutaneous delivery of PS757 resulted in reduced levels of tissue damage, decreased bacterial burdens and accelerated rates of wound-healing, which were associated with down-regulation of key virulence factors, including M protein and the SpeB cysteine protease. These data demonstrate that GmPcides show considerable promise for treating S. pyogenes infections.

6.
Nat Commun ; 15(1): 61, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168042

RESUMEN

Catheter-associated urinary tract infections (CAUTIs), a common cause of healthcare-associated infections, are caused by a diverse array of pathogens that are increasingly becoming antibiotic resistant. We analyze the microbial occurrences in catheter and urine samples from 55 human long-term catheterized patients collected over one year. Although most of these patients were prescribed antibiotics over several collection periods, their catheter samples remain colonized by one or more bacterial species. Examination of a total of 366 catheter and urine samples identify 13 positive and 13 negative genus co-occurrences over 12 collection periods, representing associations that occur more or less frequently than expected by chance. We find that for many patients, the microbial species composition between collection periods is similar. In a subset of patients, we find that the most frequently sampled bacteria, Escherichia coli and Enterococcus faecalis, co-localize on catheter samples. Further, co-culture of paired isolates recovered from the same patients reveals that E. coli significantly augments E. faecalis growth in an artificial urine medium, where E. faecalis monoculture grows poorly. These findings suggest novel strategies to collapse polymicrobial CAUTI in long-term catheterized patients by targeting mechanisms that promote positive co-associations.


Asunto(s)
Infecciones Relacionadas con Catéteres , Infecciones Urinarias , Humanos , Escherichia coli , Infecciones Relacionadas con Catéteres/microbiología , Catéteres , Infecciones Urinarias/microbiología , Enterococcus faecalis , Bacterias
7.
Res Sq ; 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37609304

RESUMEN

Catheter-associated urinary tract infections (CAUTIs) contribute greatly to the burden of healthcare associated infections. Acinetobacter baumannii is a Gram-negative bacterium with high levels of antibiotic resistance that is of increasing concern as a CAUTI pathogen. A. baumannii expresses fibrinogen-binding adhesins (Abp1D and Abp2D) that mediate colonization and biofilm formation on catheters, which become coated with fibrinogen upon insertion. We developed a protein subunit vaccine against Abp1DRBD and Abp2DRBD and showed that vaccination significantly reduced bladder bacterial titers in a mouse model of CAUTI. We then determined that immunity to Abp2DRBD alone was sufficient for protection. Mechanistically, we defined the B cell response to Abp2DRBD vaccination and demonstrated that immunity was transferrable to naïve mice through passive immunization with Abp2DRBD-immune sera. This work represents a novel strategy in the prevention of A. baumannii CAUTI and has an important role to play in the global fight against antimicrobial resistance.

8.
Proc Natl Acad Sci U S A ; 120(4): e2212694120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36652481

RESUMEN

Multidrug-resistant Acinetobacter baumannii infections are an urgent clinical problem and can cause difficult-to-treat nosocomial infections. During such infections, like catheter-associated urinary tract infections (CAUTI), A. baumannii rely on adhesive, extracellular fibers, called chaperone-usher pathway (CUP) pili for critical binding interactions. The A. baumannii uropathogenic strain, UPAB1, and the pan-European subclone II isolate, ACICU, use the CUP pili Abp1 and Abp2 (previously termed Cup and Prp, respectively) in tandem to establish CAUTIs, specifically to facilitate bacterial adherence and biofilm formation on the implanted catheter. Abp1 and Abp2 pili are tipped with two domain tip adhesins, Abp1D and Abp2D, respectively. We discovered that both adhesins bind fibrinogen, a critical host wound response protein that is released into the bladder upon catheterization and is subsequently deposited on the catheter. The crystal structures of the Abp1D and Abp2D receptor-binding domains were determined and revealed that they both contain a large, distally oriented pocket, which mediates binding to fibrinogen and other glycoproteins. Genetic, biochemical, and biophysical studies revealed that interactions with host proteins are governed by several critical residues in and along the edge of the binding pocket, one of which regulates the structural stability of an anterior loop motif. K34, located outside of the pocket but interacting with the anterior loop, also regulates the binding affinity of the protein. This study illuminates the mechanistic basis of the critical fibrinogen-coated catheter colonization step in A. baumannii CAUTI pathogenesis.


Asunto(s)
Acinetobacter baumannii , Infecciones Urinarias , Humanos , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Infecciones Urinarias/microbiología , Catéteres , Acinetobacter baumannii/genética , Fibrinógeno/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(43): e2210912119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252016

RESUMEN

The alarming rise of multidrug-resistant Gram-positive bacteria has precipitated a healthcare crisis, necessitating the development of new antimicrobial therapies. Here we describe a new class of antibiotics based on a ring-fused 2-pyridone backbone, which are active against vancomycin-resistant enterococci (VRE), a serious threat as classified by the Centers for Disease Control and Prevention, and other multidrug-resistant Gram-positive bacteria. Ring-fused 2-pyridone antibiotics have bacteriostatic activity against actively dividing exponential phase enterococcal cells and bactericidal activity against nondividing stationary phase enterococcal cells. The molecular mechanism of drug-induced killing of stationary phase cells mimics aspects of fratricide observed in enterococcal biofilms, where both are mediated by the Atn autolysin and the GelE protease. In addition, combinations of sublethal concentrations of ring-fused 2-pyridones and standard-of-care antibiotics, such as vancomycin, were found to synergize to kill clinical strains of VRE. Furthermore, a broad range of antibiotic resistant Gram-positive pathogens, including those responsible for the increasing incidence of antibiotic resistant healthcare-associated infections, are susceptible to this new class of 2-pyridone antibiotics. Given the broad antibacterial activities of ring-fused 2-pyridone compounds against Gram-positive (GmP) bacteria we term these compounds GmPcides, which hold promise in combating the rising tide of antibiotic resistant Gram-positive pathogens.


Asunto(s)
Bacterias Grampositivas , Piridonas , Enterococos Resistentes a la Vancomicina , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , N-Acetil Muramoil-L-Alanina Amidasa/farmacología , Piridonas/farmacología , Vancomicina/farmacología , Enterococos Resistentes a la Vancomicina/efectos de los fármacos
10.
Nat Microbiol ; 7(5): 630-639, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35505248

RESUMEN

Recurrent urinary tract infections (rUTIs) are a major health burden worldwide, with history of infection being a significant risk factor. While the gut is a known reservoir for uropathogenic bacteria, the role of the microbiota in rUTI remains unclear. We conducted a year-long study of women with (n = 15) and without (n = 16) history of rUTI, from whom we collected urine, blood and monthly faecal samples for metagenomic and transcriptomic interrogation. During the study 24 UTIs were reported, with additional samples collected during and after infection. The gut microbiome of individuals with a history of rUTI was significantly depleted in microbial richness and butyrate-producing bacteria compared with controls, reminiscent of other inflammatory conditions. However, Escherichia coli gut and bladder populations were comparable between cohorts in both relative abundance and phylogroup. Transcriptional analysis of peripheral blood mononuclear cells revealed expression profiles indicative of differential systemic immunity between cohorts. Altogether, these results suggest that rUTI susceptibility is in part mediated through the gut-bladder axis, comprising gut dysbiosis and differential immune response to bacterial bladder colonization, manifesting in symptoms.


Asunto(s)
Infecciones por Escherichia coli , Microbioma Gastrointestinal , Infecciones Urinarias , Disbiosis , Escherichia coli , Infecciones por Escherichia coli/microbiología , Femenino , Humanos , Leucocitos Mononucleares , Masculino , Infecciones Urinarias/microbiología
12.
BMC Microbiol ; 21(1): 53, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33596852

RESUMEN

BACKGROUND: Urinary tract infections (UTIs) affect 15 million women each year in the United States, with > 20% experiencing frequent recurrent UTIs. A recent placebo-controlled clinical trial found a 39% reduction in UTI symptoms among recurrent UTI sufferers who consumed a daily cranberry beverage for 24 weeks. Using metagenomic sequencing of stool from a subset of these trial participants, we assessed the impact of cranberry consumption on the gut microbiota, a reservoir for UTI-causing pathogens such as Escherichia coli, which causes > 80% of UTIs. RESULTS: The overall taxonomic composition, community diversity, carriage of functional pathways and gene families, and relative abundances of the vast majority of observed bacterial taxa, including E. coli, were not changed significantly by cranberry consumption. However, one unnamed Flavonifractor species (OTU41), which represented ≤1% of the overall metagenome, was significantly less abundant in cranberry consumers compared to placebo at trial completion. Given Flavonifractor's association with negative human health effects, we sought to determine OTU41 characteristic genes that may explain its differential abundance and/or relationship to key host functions. Using comparative genomic and metagenomic techniques, we identified genes in OTU41 related to transport and metabolism of various compounds, including tryptophan and cobalamin, which have been shown to play roles in host-microbe interactions. CONCLUSION: While our results indicated that cranberry juice consumption had little impact on global measures of the microbiome, we found one unnamed Flavonifractor species differed significantly between study arms. This suggests further studies are needed to assess the role of cranberry consumption and Flavonifractor in health and wellbeing in the context of recurrent UTI. TRIAL REGISTRATION: Clinical trial registration number: ClinicalTrials.gov NCT01776021 .


Asunto(s)
Bacterias/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Extractos Vegetales/administración & dosificación , Vaccinium macrocarpon/química , Adulto , Bacterias/clasificación , Bacterias/genética , Bebidas , Método Doble Ciego , Heces/microbiología , Femenino , Microbioma Gastrointestinal/fisiología , Humanos , Metagenoma , Metagenómica/métodos , Persona de Mediana Edad , Reinfección/microbiología , Reinfección/prevención & control , Infecciones Urinarias/microbiología , Infecciones Urinarias/prevención & control
13.
mBio ; 11(5)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994329

RESUMEN

Urinary tract infections (UTIs) are predominantly caused by uropathogenic Escherichia coli (UPEC). UPEC pathogenesis requires passage through a severe population bottleneck involving intracellular bacterial communities (IBCs) that are clonal expansions of a single invading UPEC bacterium in a urothelial superficial facet cell. IBCs occur only during acute pathogenesis. The bacteria in IBCs form the founder population that develops into persistent extracellular infections. Only a small fraction of UPEC organisms proceed through the IBC cycle, regardless of the inoculum size. This dramatic reduction in population size precludes the utility of genomic mutagenesis technologies for identifying genes important for persistence. To circumvent this bottleneck, we previously identified 29 positively selected genes (PSGs) within UPEC and hypothesized that they contribute to virulence. Here, we show that 8 of these 29 PSGs are required for fitness during persistent bacteriuria. Conversely, 7/8 of these PSG mutants showed essentially no phenotype in acute UTI. Deletion of the PSG argI leads to arginine auxotrophy. Relative to the other arg genes, argI in the B2 clade (which comprises most UPEC strains) of E. coli has diverged from argI in other E. coli clades. Replacement of argI in a UPEC strain with a non-UPEC argI allele complemented the arginine auxotrophy but not the persistent bacteriuria defect, showing that the UPEC argI allele contributes to persistent infection. These results highlight the complex roles of metabolic pathways during infection and demonstrate that evolutionary approaches can identify infection-specific gene functions downstream of population bottlenecks, shedding light on virulence and the genetic evolution of pathogenesis.IMPORTANCE Uropathogenic Escherichia coli (UPEC) is the most common cause of human urinary tract infection (UTI). Population bottlenecks during early stages of UTI make high-throughput screens impractical for understanding clinically important later stages of UTI, such as persistence and recurrence. As UPEC is hypothesized to be adapted to these later pathogenic stages, we previously identified 29 genes evolving under positive selection in UPEC. Here, we found that 8 of these genes, including argI (which is involved in arginine biosynthesis), are important for persistence in a mouse model of UTI. Deletion of argI and other arginine synthesis genes resulted in (i) arginine auxotrophy and (ii) defects in persistent UTI. Replacement of a B2 clade argI with a non-B2 clade argI complemented arginine auxotrophy, but the resulting strain remained attenuated in its ability to cause persistent bacteriuria. Thus, argI may have a second function during UTI that is not related to simple arginine synthesis. This study demonstrates how variation in metabolic genes can impact virulence and provides insight into the mechanisms and evolution of bacterial virulence.


Asunto(s)
Adaptación Fisiológica , Arginina/biosíntesis , Evolución Molecular , Filogenia , Sistema Urinario/microbiología , Escherichia coli Uropatógena/metabolismo , Animales , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Femenino , Aptitud Genética , Redes y Vías Metabólicas/genética , Ratones , Ratones Endogámicos C3H , Escherichia coli Uropatógena/genética , Virulencia/genética
14.
Nat Microbiol ; 3(12): 1362-1368, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30275511

RESUMEN

Chaperone-usher pathway pili are extracellular proteinaceous fibres ubiquitously found on Gram-negative bacteria, and mediate host-pathogen interactions and biofilm formation critical in pathogenesis in numerous human diseases1. During pilus assembly, an outer membrane macromolecular machine called the usher catalyses pilus biogenesis from the individual subunits that are delivered as chaperone-subunit complexes in the periplasm. The usher orchestrates pilus assembly using all five functional domains: a 24-stranded transmembrane ß-barrel translocation domain, a ß-sandwich plug domain, an amino-terminal periplasmic domain and two carboxy-terminal periplasmic domains (CTD1 and CTD2)2-6. Despite extensive structural and functional characterization, the mechanism by which the usher is activated to initiate pilus biogenesis is unknown. Here, we present the crystal structure of the full-length PapC usher from Escherichia coli in complex with its cognate PapDG chaperone-subunit complex in a pre-activation state, elucidating molecular details of how the usher is specifically engaged by allosteric interactions with its substrate preceding activation and how the usher facilitates the transfer of subunits from the amino-terminal periplasmic domain to the CTDs during pilus assembly. This work elucidates the intricate workings of a molecular machine that catalyses chaperone-usher pathway pilus assembly and opens the door for the development of potent inhibitors to block pilus biogenesis.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Fimbrias Bacterianas/química , Porinas/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fimbrias Bacterianas/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Proteínas Periplasmáticas/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos
15.
Elife ; 72018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29345620

RESUMEN

Uropathogenic E. coli (UPEC), which cause urinary tract infections (UTI), utilize type 1 pili, a chaperone usher pathway (CUP) pilus, to cause UTI and colonize the gut. The pilus rod, comprised of repeating FimA subunits, provides a structural scaffold for displaying the tip adhesin, FimH. We solved the 4.2 Å resolution structure of the type 1 pilus rod using cryo-electron microscopy. Residues forming the interactive surfaces that determine the mechanical properties of the rod were maintained by selection based on a global alignment of fimA sequences. We identified mutations that did not alter pilus production in vitro but reduced the force required to unwind the rod. UPEC expressing these mutant pili were significantly attenuated in bladder infection and intestinal colonization in mice. This study elucidates an unappreciated functional role for the molecular spring-like property of type 1 pilus rods in host-pathogen interactions and carries important implications for other pilus-mediated diseases.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Adhesinas Bacterianas/ultraestructura , Adhesión Bacteriana , Infecciones por Escherichia coli/microbiología , Fimbrias Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Escherichia coli Uropatógena/ultraestructura , Animales , Microscopía por Crioelectrón , Modelos Animales de Enfermedad , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/ultraestructura , Ratones , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/fisiología
16.
Genome Med ; 9(1): 110, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29241446

RESUMEN

Antibiotics have become the standard of care for bacterial infections. However, rising rates of antibiotic-resistant infections are outpacing the development of new antimicrobials. Broad-spectrum antibiotics also harm beneficial microbial communities inhabiting humans. To combat antibiotic resistance and protect these communities, new precision antimicrobials must be engineered to target specific pathogens.


Asunto(s)
Antiinfecciosos/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Medicina de Precisión/métodos , Animales , Antiinfecciosos/administración & dosificación , Antiinfecciosos/efectos adversos , Infecciones Bacterianas/tratamiento farmacológico , Humanos
17.
Nature ; 546(7659): 528-532, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28614296

RESUMEN

Urinary tract infections (UTIs) caused by uropathogenic Escherichia coli (UPEC) affect 150 million people annually. Despite effective antibiotic therapy, 30-50% of patients experience recurrent UTIs. In addition, the growing prevalence of UPEC that are resistant to last-line antibiotic treatments, and more recently to carbapenems and colistin, make UTI a prime example of the antibiotic-resistance crisis and emphasize the need for new approaches to treat and prevent bacterial infections. UPEC strains establish reservoirs in the gut from which they are shed in the faeces, and can colonize the periurethral area or vagina and subsequently ascend through the urethra to the urinary tract, where they cause UTIs. UPEC isolates encode up to 16 distinct chaperone-usher pathway pili, and each pilus type may enable colonization of a habitat in the host or environment. For example, the type 1 pilus adhesin FimH binds mannose on the bladder surface, and mediates colonization of the bladder. However, little is known about the mechanisms underlying UPEC persistence in the gut. Here, using a mouse model, we show that F17-like and type 1 pili promote intestinal colonization and show distinct binding to epithelial cells distributed along colonic crypts. Phylogenomic and structural analyses reveal that F17-like pili are closely related to pilus types carried by intestinal pathogens, but are restricted to extra-intestinal pathogenic E. coli. Moreover, we show that targeting FimH with M4284, a high-affinity inhibitory mannoside, reduces intestinal colonization of genetically diverse UPEC isolates, while simultaneously treating UTI, without notably disrupting the structural configuration of the gut microbiota. By selectively depleting intestinal UPEC reservoirs, mannosides could markedly reduce the rate of UTIs and recurrent UTIs.


Asunto(s)
Proteínas Fimbrias/antagonistas & inhibidores , Intestinos/efectos de los fármacos , Intestinos/microbiología , Manósidos/farmacología , Ácidos Ftálicos/farmacología , Infecciones Urinarias/prevención & control , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/aislamiento & purificación , Adhesinas de Escherichia coli/metabolismo , Secuencia de Aminoácidos , Animales , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Heces/microbiología , Femenino , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/clasificación , Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Humanos , Intestinos/citología , Manósidos/uso terapéutico , Ratones , Modelos Moleculares , Ácidos Ftálicos/uso terapéutico , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/microbiología , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/clasificación , Escherichia coli Uropatógena/genética
18.
Sci Transl Med ; 9(382)2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28330863

RESUMEN

Urinary tract infections (UTIs) are caused by uropathogenic Escherichia coli (UPEC) strains. In contrast to many enteric E. coli pathogroups, no genetic signature has been identified for UPEC strains. We conducted a high-resolution comparative genomic study using E. coli isolates collected from the urine of women suffering from frequent recurrent UTIs. These isolates were genetically diverse and varied in their urovirulence, that is, their ability to infect the bladder in a mouse model of cystitis. We found no set of genes, including previously defined putative urovirulence factors (PUFs), that were predictive of urovirulence. In addition, in some patients, the E. coli strain causing a recurrent UTI had fewer PUFs than the supplanted strain. In competitive experimental infections in mice, the supplanting strain was more efficient at colonizing the mouse bladder than the supplanted strain. Despite the lack of a clear genomic signature for urovirulence, comparative transcriptomic and phenotypic analyses revealed that the expression of key conserved functions during culture, such as motility and metabolism, could be used to predict subsequent colonization of the mouse bladder. Together, our findings suggest that UTI risk and outcome may be determined by complex interactions between host susceptibility and the urovirulence potential of diverse bacterial strains.


Asunto(s)
Susceptibilidad a Enfermedades , Infecciones por Escherichia coli/microbiología , Escherichia coli/patogenicidad , Interacciones Huésped-Patógeno , Infecciones Urinarias/microbiología , Animales , Biomarcadores/metabolismo , Enfermedad Crónica , Coinfección/microbiología , Recuento de Colonia Microbiana , Cistitis/microbiología , Cistitis/patología , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Femenino , Regulación Bacteriana de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos , Fenotipo , Filogenia , Recurrencia , Factores de Riesgo , Índice de Severidad de la Enfermedad , Resultado del Tratamiento , Orina/microbiología , Virulencia/genética , Factores de Virulencia/metabolismo
19.
Sci Adv ; 3(2): e1601944, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28246638

RESUMEN

Positive selection in the two-domain type 1 pilus adhesin FimH enhances Escherichia coli fitness in urinary tract infection (UTI). We report a comprehensive atomic-level view of FimH in two-state conformational ensembles in solution, composed of one low-affinity tense (T) and multiple high-affinity relaxed (R) conformations. Positively selected residues allosterically modulate the equilibrium between these two conformational states, each of which engages mannose through distinct binding orientations. A FimH variant that only adopts the R state is severely attenuated early in a mouse model of uncomplicated UTI but is proficient at colonizing catheterized bladders in vivo or bladder transitional-like epithelial cells in vitro. Thus, the bladder habitat has barrier(s) to R state-mediated colonization possibly conferred by the terminally differentiated bladder epithelium and/or decoy receptors in urine. Together, our studies reveal the conformational landscape in solution, binding mechanisms, and adhesive strength of an allosteric two-domain adhesin that evolved "moderate" affinity to optimize persistence in the bladder during UTI.


Asunto(s)
Adhesinas de Escherichia coli , Infecciones por Escherichia coli , Escherichia coli , Proteínas Fimbrias , Interacciones Huésped-Parásitos/fisiología , Vejiga Urinaria , Infecciones Urinarias , Adhesinas de Escherichia coli/química , Adhesinas de Escherichia coli/genética , Adhesinas de Escherichia coli/metabolismo , Animales , Escherichia coli/química , Escherichia coli/patogenicidad , Escherichia coli/fisiología , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/patología , Femenino , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Ratones , Dominios Proteicos , Vejiga Urinaria/metabolismo , Vejiga Urinaria/microbiología , Vejiga Urinaria/fisiología , Infecciones Urinarias/genética , Infecciones Urinarias/metabolismo , Infecciones Urinarias/microbiología , Infecciones Urinarias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...