Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114080, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38581677

RESUMEN

Midbrain dopamine neurons are thought to play key roles in learning by conveying the difference between expected and actual outcomes. Recent evidence suggests diversity in dopamine signaling, yet it remains poorly understood how heterogeneous signals might be organized to facilitate the role of downstream circuits mediating distinct aspects of behavior. Here, we investigated the organizational logic of dopaminergic signaling by recording and labeling individual midbrain dopamine neurons during associative behavior. Our findings show that reward information and behavioral parameters are not only heterogeneously encoded but also differentially distributed across populations of dopamine neurons. Retrograde tracing and fiber photometry suggest that populations of dopamine neurons projecting to different striatal regions convey distinct signals. These data, supported by computational modeling, indicate that such distributional coding can maximize dynamic range and tailor dopamine signals to facilitate specialized roles of different striatal regions.


Asunto(s)
Neuronas Dopaminérgicas , Mesencéfalo , Neuronas Dopaminérgicas/fisiología , Neuronas Dopaminérgicas/metabolismo , Animales , Mesencéfalo/fisiología , Mesencéfalo/citología , Masculino , Ratones , Recompensa , Dopamina/metabolismo , Aprendizaje por Asociación/fisiología , Ratones Endogámicos C57BL
2.
Nat Commun ; 13(1): 1296, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35277506

RESUMEN

Dopamine-dependent long-term plasticity is believed to be a cellular mechanism underlying reinforcement learning. In response to reward and reward-predicting cues, phasic dopamine activity potentiates the efficacy of corticostriatal synapses on spiny projection neurons (SPNs). Since phasic dopamine activity also encodes other behavioural variables, it is unclear how postsynaptic neurons identify which dopamine event is to induce long-term plasticity. Additionally, it is unknown how phasic dopamine released from arborised axons can potentiate targeted striatal synapses through volume transmission. To examine these questions we manipulated striatal cholinergic interneurons (ChIs) and dopamine neurons independently in two distinct in vivo paradigms. We report that long-term potentiation (LTP) at corticostriatal synapses with SPNs is dependent on the coincidence of pauses in ChIs and phasic dopamine activation, critically accompanied by SPN depolarisation. Thus, the ChI pause defines the time window for phasic dopamine to induce plasticity, while depolarisation of SPNs constrains the synapses eligible for plasticity.


Asunto(s)
Cuerpo Estriado , Dopamina , Colinérgicos , Neuronas Colinérgicas/fisiología , Cuerpo Estriado/fisiología , Dopamina/fisiología , Neuronas Dopaminérgicas , Interneuronas/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología
3.
Proc Natl Acad Sci U S A ; 113(15): E2180-8, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27001837

RESUMEN

Midbrain dopaminergic neurons are essential for appropriate voluntary movement, as epitomized by the cardinal motor impairments arising in Parkinson's disease. Understanding the basis of such motor control requires understanding how the firing of different types of dopaminergic neuron relates to movement and how this activity is deciphered in target structures such as the striatum. By recording and labeling individual neurons in behaving mice, we show that the representation of brief spontaneous movements in the firing of identified midbrain dopaminergic neurons is cell-type selective. Most dopaminergic neurons in the substantia nigra pars compacta (SNc), but not in ventral tegmental area or substantia nigra pars lateralis, consistently represented the onset of spontaneous movements with a pause in their firing. Computational modeling revealed that the movement-related firing of these dopaminergic neurons can manifest as rapid and robust fluctuations in striatal dopamine concentration and receptor activity. The exact nature of the movement-related signaling in the striatum depended on the type of dopaminergic neuron providing inputs, the striatal region innervated, and the type of dopamine receptor expressed by striatal neurons. Importantly, in aged mice harboring a genetic burden relevant for human Parkinson's disease, the precise movement-related firing of SNc dopaminergic neurons and the resultant striatal dopamine signaling were lost. These data show that distinct dopaminergic cell types differentially encode spontaneous movement and elucidate how dysregulation of their firing in early Parkinsonism can impair their effector circuits.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Movimiento/fisiología , Trastornos Parkinsonianos/fisiopatología , Animales , Cuerpo Estriado/fisiología , Dopamina/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Sustancia Negra/fisiología , Área Tegmental Ventral/fisiología , alfa-Sinucleína/genética
4.
Hum Mol Genet ; 25(5): 951-63, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26744332

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) lead to late-onset, autosomal dominant Parkinson's disease, characterized by the degeneration of dopamine neurons of the substantia nigra pars compacta, a deficit in dopamine neurotransmission and the development of motor and non-motor symptoms. The most prevalent Parkinson's disease LRRK2 mutations are located in the kinase (G2019S) and GTPase (R1441C) encoding domains of LRRK2. To better understand the sequence of events that lead to progressive neurophysiological deficits in vulnerable neurons and circuits in Parkinson's disease, we have generated LRRK2 bacterial artificial chromosome transgenic rats expressing either G2019S or R1441C mutant, or wild-type LRRK2, from the complete human LRRK2 genomic locus, including endogenous promoter and regulatory regions. Aged (18-21 months) G2019S and R1441C mutant transgenic rats exhibit L-DOPA-responsive motor dysfunction, impaired striatal dopamine release as determined by fast-scan cyclic voltammetry, and cognitive deficits. In addition, in vivo recordings of identified substantia nigra pars compacta dopamine neurons in R1441C LRRK2 transgenic rats reveal an age-dependent reduction in burst firing, which likely results in further reductions to striatal dopamine release. These alterations to dopamine circuit function occur in the absence of neurodegeneration or abnormal protein accumulation within the substantia nigra pars compacta, suggesting that nigrostriatal dopamine dysfunction precedes detectable protein aggregation and cell death in the development of Parkinson's disease. In conclusion, our longitudinal deep-phenotyping provides novel insights into how the genetic burden arising from human mutant LRRK2 manifests as early pathophysiological changes to dopamine circuit function and highlights a potential model for testing Parkinson's therapeutics.


Asunto(s)
Envejecimiento/metabolismo , Antiparkinsonianos/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Levodopa/farmacología , Mutación , Enfermedad de Parkinson/genética , Potenciales de Acción , Envejecimiento/patología , Sustitución de Aminoácidos , Animales , Muerte Celular/genética , Cromosomas Artificiales Bacterianos/química , Cromosomas Artificiales Bacterianos/metabolismo , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Femenino , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Masculino , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Regiones Promotoras Genéticas , Dominios Proteicos , Ratas , Ratas Transgénicas , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/patología
5.
Neuron ; 87(6): 1290-1303, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26402610

RESUMEN

The dynamic interactions between hippocampus and amygdala are critical for emotional memory. Theta synchrony between these structures occurs during fear memory retrieval and may facilitate synaptic plasticity, but the cellular mechanisms are unknown. We report that interneurons of the mouse basal amygdala are activated during theta network activity or optogenetic stimulation of ventral CA1 pyramidal cell axons, whereas principal neurons are inhibited. Interneurons provide feedforward inhibition that transiently hyperpolarizes principal neurons. However, synaptic inhibition attenuates during theta frequency stimulation of ventral CA1 fibers, and this broadens excitatory postsynaptic potentials. These effects are mediated by GABAB receptors and change in the Cl(-) driving force. Pairing theta frequency stimulation of ventral CA1 fibers with coincident stimuli of the lateral amygdala induces long-term potentiation of lateral-basal amygdala excitatory synapses. Hence, feedforward inhibition, known to enforce temporal fidelity of excitatory inputs, dominates hippocampus-amygdala interactions to gate heterosynaptic plasticity. VIDEO ABSTRACT.


Asunto(s)
Amígdala del Cerebelo/fisiología , Hipocampo/fisiología , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Ritmo Teta/fisiología , Amígdala del Cerebelo/ultraestructura , Animales , Hipocampo/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Sinapsis/ultraestructura
6.
Proc Natl Acad Sci U S A ; 112(35): E4929-38, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26283356

RESUMEN

Midbrain dopaminergic (mDA) neurons are implicated in cognitive functions, neuropsychiatric disorders, and pathological conditions; hence understanding genes regulating their homeostasis has medical relevance. Transcription factors FOXA1 and FOXA2 (FOXA1/2) are key determinants of mDA neuronal identity during development, but their roles in adult mDA neurons are unknown. We used a conditional knockout strategy to specifically ablate FOXA1/2 in mDA neurons of adult mice. We show that deletion of Foxa1/2 results in down-regulation of tyrosine hydroxylase, the rate-limiting enzyme of dopamine (DA) biosynthesis, specifically in dopaminergic neurons of the substantia nigra pars compacta (SNc). In addition, DA synthesis and striatal DA transmission were reduced after Foxa1/2 deletion. Furthermore, the burst-firing activity characteristic of SNc mDA neurons was drastically reduced in the absence of FOXA1/2. These molecular and functional alterations lead to a severe feeding deficit in adult Foxa1/2 mutant mice, independently of motor control, which could be rescued by L-DOPA treatment. FOXA1/2 therefore control the maintenance of molecular and physiological properties of SNc mDA neurons and impact on feeding behavior in adult mice.


Asunto(s)
Dopamina/metabolismo , Conducta Alimentaria , Factor Nuclear 3-alfa del Hepatocito/fisiología , Factor Nuclear 3-beta del Hepatocito/fisiología , Neuronas/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Eliminación de Gen , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/genética , Ratones , Ratones Noqueados , Neuronas/citología , ARN Mensajero/genética
7.
J Neurosci ; 35(17): 6667-88, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25926446

RESUMEN

Studies in dopamine-depleted rats indicate that the external globus pallidus (GPe) contains two main types of GABAergic projection cell; so-called "prototypic" and "arkypallidal" neurons. Here, we used correlative anatomical and electrophysiological approaches in rats to determine whether and how this dichotomous organization applies to the dopamine-intact GPe. Prototypic neurons coexpressed the transcription factors Nkx2-1 and Lhx6, comprised approximately two-thirds of all GPe neurons, and were the major GPe cell type innervating the subthalamic nucleus (STN). In contrast, arkypallidal neurons expressed the transcription factor FoxP2, constituted just over one-fourth of GPe neurons, and innervated the striatum but not STN. In anesthetized dopamine-intact rats, molecularly identified prototypic neurons fired at relatively high rates and with high regularity, regardless of brain state (slow-wave activity or spontaneous activation). On average, arkypallidal neurons fired at lower rates and regularities than prototypic neurons, and the two cell types could be further distinguished by the temporal coupling of their firing to ongoing cortical oscillations. Complementing the activity differences observed in vivo, the autonomous firing of identified arkypallidal neurons in vitro was slower and more variable than that of prototypic neurons, which tallied with arkypallidal neurons displaying lower amplitudes of a "persistent" sodium current important for such pacemaking. Arkypallidal neurons also exhibited weaker driven and rebound firing compared with prototypic neurons. In conclusion, our data support the concept that a dichotomous functional organization, as actioned by arkypallidal and prototypic neurons with specialized molecular, structural, and physiological properties, is fundamental to the operations of the dopamine-intact GPe.


Asunto(s)
Dopamina/metabolismo , Globo Pálido/citología , Vías Nerviosas/fisiología , Neuronas/fisiología , Núcleo Subtalámico/citología , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Adrenérgicos/toxicidad , Animales , Animales Recién Nacidos , Proteínas ELAV/metabolismo , Proteína 3 Similar a ELAV , Femenino , Factores de Transcripción Forkhead/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Vías Nerviosas/efectos de los fármacos , Neuronas/efectos de los fármacos , Proteínas Nucleares/metabolismo , Oxidopamina/toxicidad , Parvalbúminas/metabolismo , Ratas , Estadísticas no Paramétricas , Factor Nuclear Tiroideo 1 , Factores de Transcripción/metabolismo
8.
Neuron ; 86(2): 501-13, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25843402

RESUMEN

Transcriptional codes initiated during brain development are ultimately realized in adulthood as distinct cell types performing specialized roles in behavior. Focusing on the mouse external globus pallidus (GPe), we demonstrate that the potential contributions of two GABAergic GPe cell types to voluntary action are fated from early life to be distinct. Prototypic GPe neurons derive from the medial ganglionic eminence of the embryonic subpallium and express the transcription factor Nkx2-1. These neurons fire at high rates during alert rest, and encode movements through heterogeneous firing rate changes, with many neurons decreasing their activity. In contrast, arkypallidal GPe neurons originate from lateral/caudal ganglionic eminences, express the transcription factor FoxP2, fire at low rates during rest, and encode movements with robust increases in firing. We conclude that developmental diversity positions prototypic and arkypallidal neurons to fulfil distinct roles in behavior via their disparate regulation of GABA release onto different basal ganglia targets.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Globo Pálido/citología , Globo Pálido/crecimiento & desarrollo , Movimiento/fisiología , Neuronas/clasificación , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Potenciales de Acción/fisiología , Animales , Linaje de la Célula/fisiología , Encefalinas/metabolismo , Globo Pálido/embriología , Ratones , Precursores de Proteínas/metabolismo , Curva ROC , Factor Nuclear Tiroideo 1 , Ácido gamma-Aminobutírico/metabolismo
9.
Proc Natl Acad Sci U S A ; 110(42): E4016-25, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24082145

RESUMEN

The pathological end-state of Parkinson disease is well described from postmortem tissue, but there remains a pressing need to define early functional changes to susceptible neurons and circuits. In particular, mechanisms underlying the vulnerability of the dopamine neurons of the substantia nigra pars compacta (SNc) and the importance of protein aggregation in driving the disease process remain to be determined. To better understand the sequence of events occurring in familial and sporadic Parkinson disease, we generated bacterial artificial chromosome transgenic mice (SNCA-OVX) that express wild-type α-synuclein from the complete human SNCA locus at disease-relevant levels and display a transgene expression profile that recapitulates that of endogenous α-synuclein. SNCA-OVX mice display age-dependent loss of nigrostriatal dopamine neurons and motor impairments characteristic of Parkinson disease. This phenotype is preceded by early deficits in dopamine release from terminals in the dorsal, but not ventral, striatum. Such neurotransmission deficits are not seen at either noradrenergic or serotoninergic terminals. Dopamine release deficits are associated with an altered distribution of vesicles in dopaminergic axons in the dorsal striatum. Aged SNCA-OVX mice exhibit reduced firing of SNc dopamine neurons in vivo measured by juxtacellular recording of neurochemically identified neurons. These progressive changes in vulnerable SNc neurons were observed independently of overt protein aggregation, suggesting neurophysiological changes precede, and are not driven by, aggregate formation. This longitudinal phenotyping strategy in SNCA-OVX mice thus provides insights into the region-specific neuronal disturbances preceding and accompanying Parkinson disease.


Asunto(s)
Envejecimiento/metabolismo , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/metabolismo , Trastornos Parkinsonianos/metabolismo , Sustancia Negra/metabolismo , Transmisión Sináptica , Envejecimiento/patología , Animales , Cromosomas Artificiales Bacterianos/genética , Cromosomas Artificiales Bacterianos/metabolismo , Cuerpo Estriado/patología , Cuerpo Estriado/fisiopatología , Neuronas Dopaminérgicas/patología , Humanos , Ratones , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/fisiopatología , Sustancia Negra/patología , Sustancia Negra/fisiopatología , alfa-Sinucleína/biosíntesis , alfa-Sinucleína/genética
10.
J Physiol ; 589(Pt 12): 2993-3008, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21502290

RESUMEN

The membrane potential dynamics of stellate neurons in layer II of the medial entorhinal cortex are important for neural encoding of location. Previous studies suggest that these neurons generate intrinsic theta-frequency membrane potential oscillations, with a period that depends on neuronal location on the dorsal­ventral axis of themedial entorhinal cortex, and which in behaving animals could support generation of grid-like spatial firing fields. To address the nature and organization of this theta-like activity, we adopt the Lombmethod of least-squares spectral analysis. We demonstrate that peaks in frequency spectra that differ significantly from Gaussian noise do not necessarily imply the existence of a periodic oscillator, but can instead arise from filtered stochastic noise or a stochastic random walk. We show that theta-like membrane potential activity recorded fromstellate neurons in mature brain slices is consistentwith stochastic mechanisms, but not with generation by a periodic oscillator. The dorsal­ventral organization of intrinsic theta-likemembrane potential activity, and themodification of this activity during block of HCN channels, both reflect altered frequency distributions of stochastic spectral peaks, rather than tuning of a periodic oscillator. Our results demonstrate the importance of distinguishing periodic oscillations from stochastic processes.We suggest that dorsal­ventral tuning of theta-like membrane potential activity is due to differences in stochastic current fluctuations resulting from organization of ion channels that also control synaptic integration.


Asunto(s)
Relojes Biológicos/fisiología , Corteza Entorrinal/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Neuronas/fisiología , Ganglio Estrellado/fisiología , Animales , Células Cultivadas , Simulación por Computador , Ratones , Procesos Estocásticos
11.
Neuron ; 60(5): 875-89, 2008 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-19081381

RESUMEN

Neurons important for cognitive function are often classified by their morphology and integrative properties. However, it is unclear if within a single class of neuron these properties tune synaptic responses to the salient features of the information that each neuron represents. We demonstrate that for stellate neurons in layer II of the medial entorhinal cortex, the waveform of postsynaptic potentials, the time window for detection of coincident inputs, and responsiveness to gamma frequency inputs follow a dorsal-ventral gradient similar to the topographical organization of grid-like spatial firing fields of neurons in this area. We provide evidence that these differences are due to a membrane conductance gradient mediated by HCN and leak potassium channels. These findings suggest key roles for synaptic integration in computations carried out within the medial entorhinal cortex and imply that tuning of neural information processing by membrane ion channels is important for normal cognitive function.


Asunto(s)
Corteza Entorrinal/citología , Corteza Entorrinal/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Compuestos de Bario/farmacología , Mapeo Encefálico , Tamaño de la Célula , Cesio/farmacología , Cloruros/farmacología , Canales Catiónicos Regulados por Nucleótidos Cíclicos/antagonistas & inhibidores , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Ratones , Antagonistas Muscarínicos/farmacología , Neuronas/clasificación , Técnicas de Placa-Clamp , Pirimidinas/farmacología , Quinidina/farmacología
12.
J Neurosci ; 27(46): 12440-51, 2007 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-18003822

RESUMEN

Whereas recent studies have elucidated principles for representation of information within the entorhinal cortex, less is known about the molecular basis for information processing by entorhinal neurons. The HCN1 gene encodes ion channels that mediate hyperpolarization-activated currents (I(h)) that control synaptic integration and influence several forms of learning and memory. We asked whether hyperpolarization-activated, cation nonselective 1 (HCN1) channels control processing of information by stellate cells found within layer II of the entorhinal cortex. Axonal projections from these neurons form a major component of the synaptic input to the dentate gyrus of the hippocampus. To determine whether HCN1 channels control either the resting or the active properties of stellate neurons, we performed whole-cell recordings in horizontal brain slices prepared from adult wild-type and HCN1 knock-out mice. We found that HCN1 channels are required for rapid and full activation of hyperpolarization-activated currents in stellate neurons. HCN1 channels dominate the membrane conductance at rest, are not required for theta frequency (4-12 Hz) membrane potential fluctuations, but suppress low-frequency (<4 Hz) components of spontaneous and evoked membrane potential activity. During sustained activation of stellate cells sufficient for firing of repeated action potentials, HCN1 channels control the pattern of spike output by promoting recovery of the spike afterhyperpolarization. These data suggest that HCN1 channels expressed by stellate neurons in layer II of the entorhinal cortex are key molecular components in the processing of inputs to the hippocampal dentate gyrus, with distinct integrative roles during resting and active states.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Corteza Entorrinal/metabolismo , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Canales de Potasio/metabolismo , Transmisión Sináptica/genética , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Giro Dentado/metabolismo , Corteza Entorrinal/citología , Femenino , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Memoria/fisiología , Ratones , Ratones Noqueados , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Vías Nerviosas/citología , Neuronas/citología , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Canales de Potasio/genética , Membranas Sinápticas/genética , Membranas Sinápticas/metabolismo , Transmisión Sináptica/efectos de los fármacos , Ritmo Teta/efectos de los fármacos
13.
Neuropharmacology ; 49(6): 883-9, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16212990

RESUMEN

Of the five excitatory amino acid transporters (EAATs) identified, two genes are expressed by neurons (EAAT3 and EAAT4) and give rise to transporters confined to neuronal cell bodies and dendrites. At an ultrastructural level, EAAT3 and EAAT4 proteins are clustered at the edges of postsynaptic densities of excitatory synapses. This pattern of localization suggests that postsynaptic EAATs may help to limit spillover of glutamate from excitatory synapses. In an effort to study transporter localization in living neurons and ultimately to manipulate uptake at intact synapses, we have developed viral reagents encoding neuronal EAATs tagged with GFP. We demonstrate that these fusion proteins are capable of Na(+)-dependent glutamate uptake, that they generate ionic conductances indistinguishable from their wild-type counterparts, and that GFP does not alter their glutamate dose-dependence. Two-photon microscopy was used to examine fusion protein expression in Purkinje neurons in acute cerebellar slices. Both EAAT3-GFP and EAAT4-GFP were observed at high levels in the dendritic spines of transfected Purkinje neurons. These findings indicate that functional EAAT fusion proteins can be synthesized and appropriately trafficked to postsynaptic compartments. Furthermore, they validate a powerful system for looking at EAAT function in situ.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Cerebelo/citología , Regulación de la Expresión Génica/fisiología , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células de Purkinje/metabolismo , Sistema de Transporte de Aminoácidos X-AG/clasificación , Animales , Animales Recién Nacidos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacología , Línea Celular , Clonación Molecular/métodos , Cricetinae , Relación Dosis-Respuesta a Droga , Humanos , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Microinyecciones/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Oocitos , Técnicas de Placa-Clamp/métodos , Ratas , Sodio/metabolismo , Transfección/métodos , Tritio/metabolismo , Xenopus
14.
Nat Neurosci ; 8(3): 339-45, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15696164

RESUMEN

Neuronal mechanisms underlying alcohol intoxication are unclear. We find that alcohol impairs motor coordination by enhancing tonic inhibition mediated by a specific subtype of extrasynaptic GABA(A) receptor (GABAR), alpha6beta3delta, expressed exclusively in cerebellar granule cells. In recombinant studies, we characterize a naturally occurring single-nucleotide polymorphism that causes a single amino acid change (R100Q) in alpha6 (encoded in rats by the Gabra6 gene). We show that this change selectively increases alcohol sensitivity of alpha6beta3delta GABARs. Behavioral and electrophysiological comparisons of Gabra6(100R/100R) and Gabra6(100Q/100Q) rats strongly suggest that alcohol impairs motor coordination by enhancing granule cell tonic inhibition. These findings identify extrasynaptic GABARs as critical targets underlying low-dose alcohol intoxication and demonstrate that subtle changes in tonic inhibition in one class of neurons can alter behavior.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Inhibición Neural/fisiología , Neuronas/fisiología , Desempeño Psicomotor/fisiología , Receptores de GABA-A/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Conducta Animal , Cerebelo/citología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Genotipo , Técnicas In Vitro , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Polimorfismo de Nucleótido Simple/fisiología , Subunidades de Proteína/fisiología , Desempeño Psicomotor/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/genética , Transfección/métodos , Xenopus laevis , Ácido gamma-Aminobutírico/farmacología
15.
Trends Neurosci ; 27(4): 210-7, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15046880

RESUMEN

Potassium channels are crucial regulators of neuronal excitability, setting resting membrane potentials and firing thresholds, repolarizing action potentials and limiting excitability. Although most of our understanding of K+ channels is based on somatic recordings, there is good evidence that these channels are present in synaptic terminals. In recent years the improved access to presynaptic compartments afforded by direct recording techniques has indicated diverse roles for native K+ channels, from suppression of aberrant firing to action potential repolarization and activity-dependent modulation of synaptic activity. This article reviews the growing evidence for multiple roles and discrete localization of distinct K+ channels at presynaptic terminals.


Asunto(s)
Potenciales de la Membrana/fisiología , Neuronas/metabolismo , Canales de Potasio/metabolismo , Terminales Presinápticos/metabolismo , Animales , Humanos , Mamíferos , Canales de Potasio/clasificación
16.
J Physiol ; 550(Pt 1): 27-33, 2003 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12777451

RESUMEN

Voltage-gated K+ channels activating close to resting membrane potentials are widely expressed and differentially located in axons, presynaptic terminals and cell bodies. There is extensive evidence for localisation of Kv1 subunits at many central synaptic terminals but few clues to their presynaptic function. We have used the calyx of Held to investigate the role of presynaptic Kv1 channels in the rat by selectively blocking Kv1.1 and Kv1.2 containing channels with dendrotoxin-K (DTX-K) and tityustoxin-Kalpha (TsTX-Kalpha) respectively. We show that Kv1.2 homomers are responsible for two-thirds of presynaptic low threshold current, whilst Kv1.1/Kv1.2 heteromers contribute the remaining current. These channels are located in the transition zone between the axon and synaptic terminal, contrasting with the high threshold K+ channel subunit Kv3.1 which is located on the synaptic terminal itself. Kv1 homomers were absent from bushy cell somata (from which the calyx axons arise); instead somatic low threshold channels consisted of heteromers containing Kv1.1, Kv1.2 and Kv1.6 subunits. Current-clamp recording from the calyx showed that each presynaptic action potential (AP) was followed by a depolarising after-potential (DAP) lasting around 50 ms. Kv1.1/Kv1.2 heteromers had little influence on terminal excitability, since DTX-K did not alter AP firing. However TsTX-Kalpha increased DAP amplitude, bringing the terminal closer to threshold for generating an additional AP. Paired pre- and postsynaptic recordings confirmed that this aberrant AP evoked an excitatory postsynaptic current (EPSC). We conclude that Kv1.2 channels have a general presynaptic function in suppressing terminal hyperexcitability during the depolarising after-potential.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Canales de Potasio/fisiología , Terminales Presinápticos/fisiología , Potenciales de Acción/fisiología , Animales , Axones/metabolismo , Tronco Encefálico/citología , Tronco Encefálico/metabolismo , Canales de Potasio de Tipo Rectificador Tardío , Conductividad Eléctrica , Técnicas In Vitro , Canal de Potasio Kv.1.1 , Canal de Potasio Kv.1.2 , Canales de Potasio/metabolismo , Terminales Presinápticos/metabolismo , Ratas , Ratas Endogámicas , Ratas Wistar
17.
J Neurosci ; 22(16): 6953-61, 2002 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12177193

RESUMEN

Low-threshold voltage-gated potassium currents (I(LT)) activating close to resting membrane potentials play an important role in shaping action potential (AP) firing patterns. In the medial nucleus of the trapezoid body (MNTB), I(LT) ensures generation of single APs during each EPSP, so that the timing and pattern of AP firing is preserved on transmission across this relay synapse (calyx of Held). This temporal information is critical for computation of sound location using interaural timing and level differences. I(LT) currents are generated by dendrotoxin-I-sensitive, Shaker-related K+ channels; our immunohistochemistry confirms that MNTB neurons express Kv1.1, Kv1.2, and Kv1.6 subunits. We used subunit-specific toxins to separate I(LT) into two components, each contributing approximately one-half of the total low-threshold current: (1) I(LTS), a tityustoxin-Kalpha-sensitive current (TsTX) (known to block Kv1.2 containing channels), and (2) I(LTR), an TsTX-resistant current. Both components were sensitive to the Kv1.1-specific toxin dendrotoxin-K and were insensitive to tetraethylammonium (1 mm). This pharmacological profile excludes homomeric Kv1.1 or Kv1.2 channels and is consistent with I(LTS) channels being Kv1.1/Kv1.2 heteromers, whereas I(LTR) channels are probably Kv1.1/Kv1.6 heteromers. Although they have similar kinetic properties, I(LTS) is critical for generating the phenotypic single AP response of MNTB neurons. Immunohistochemistry confirms that Kv1.1 and Kv1.2 (I(LTS) channels), but not Kv1.6, are concentrated in the first 20 microm of MNTB axons. Our results show that heteromeric channels containing Kv1.2 subunits govern AP firing and suggest that their localization at the initial segment of MNTB axons can explain their dominance of AP firing behavior.


Asunto(s)
Potenciales de Acción/fisiología , Tronco Encefálico/metabolismo , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Vías Auditivas/citología , Vías Auditivas/efectos de los fármacos , Vías Auditivas/metabolismo , Axones/efectos de los fármacos , Axones/metabolismo , Tronco Encefálico/citología , Tronco Encefálico/efectos de los fármacos , Venenos Elapídicos/farmacología , Inmunohistoquímica , Técnicas In Vitro , Canal de Potasio Kv.1.2 , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neurotoxinas/farmacología , Técnicas de Placa-Clamp , Péptidos/farmacología , Bloqueadores de los Canales de Potasio , Subunidades de Proteína , Ratas , Ratas Endogámicas , Venenos de Escorpión/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA