Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5489, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942786

RESUMEN

Lipid droplets (LDs) are dynamic lipid storage organelles. They are tightly linked to metabolism and can exert protective functions, making them important players in health and disease. Most LD studies in vivo rely on staining methods, providing only a snapshot. We therefore developed a LD-reporter mouse by labelling the endogenous LD coat protein perilipin 2 (PLIN2) with tdTomato, enabling staining-free fluorescent LD visualisation in living and fixed tissues and cells. Here we validate this model under standard and high-fat diet conditions and demonstrate that LDs are highly abundant in various cell types in the healthy brain, including neurons, astrocytes, ependymal cells, neural stem/progenitor cells and microglia. Furthermore, we also show that LDs are abundant during brain development and can be visualized using live imaging of embryonic slices. Taken together, our tdTom-Plin2 mouse serves as a novel tool to study LDs and their dynamics under both physiological and diseased conditions in all tissues expressing Plin2.


Asunto(s)
Encéfalo , Gotas Lipídicas , Perilipina-2 , Animales , Perilipina-2/metabolismo , Perilipina-2/genética , Gotas Lipídicas/metabolismo , Encéfalo/metabolismo , Ratones , Neuronas/metabolismo , Técnicas de Sustitución del Gen , Ratones Transgénicos , Femenino , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Masculino , Astrocitos/metabolismo , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Microglía/metabolismo
2.
Science ; 382(6673): 958-963, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37995223

RESUMEN

Adult neural stem cells (NSCs) contribute to lifelong brain plasticity. In the adult mouse ventricular-subventricular zone, NSCs are heterogeneous and, depending on their location in the niche, give rise to different subtypes of olfactory bulb (OB) interneurons. Here, we show that multiple regionally distinct NSCs, including domains that are usually quiescent, are recruited on different gestation days during pregnancy. Synchronized activation of these adult NSC pools generates transient waves of short-lived OB interneurons, especially in layers with less neurogenesis under homeostasis. Using spatial transcriptomics, we identified molecular markers of pregnancy-associated interneurons and showed that some subsets are temporarily needed for own pup recognition. Thus, pregnancy triggers transient yet behaviorally relevant neurogenesis, highlighting the physiological relevance of adult stem cell heterogeneity.


Asunto(s)
Interneuronas , Ventrículos Laterales , Conducta Materna , Neurogénesis , Plasticidad Neuronal , Bulbo Olfatorio , Embarazo , Olfato , Animales , Femenino , Ratones , Embarazo/fisiología , Células Madre Adultas/fisiología , Interneuronas/citología , Interneuronas/fisiología , Ventrículos Laterales/citología , Ventrículos Laterales/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Bulbo Olfatorio/citología , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/metabolismo , Transcriptoma , Conducta Materna/fisiología
3.
Cell Rep ; 41(10): 111773, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36476846

RESUMEN

Neural stem cells (NSCs) in the adult ventricular-subventricular zone (V-SVZ) generate neurons and glia throughout life. MicroRNAs are important post-transcriptional regulators frequently acting in a context-dependent manner. Here, microRNA profiling defines cohorts of miRNAs in quiescent and activated NSCs, with miR-17∼92 highly upregulated in activated NSCs and transit amplifying cells (TACs) versus quiescent NSCs. Conditional miR-17∼92 deletion in the adult V-SVZ results in stage-specific effects. In NSCs, it reduces proliferation in vitro and in vivo, whereas in TACs, it selectively shifts neurogenic OLIG2- DLX2+ toward oligodendrogenic OLIG2+ DLX2- TACs, due to de-repression of an oligodendrogenic program, leading to increased oligodendrogenesis in vivo. This differential regulation of TAC subpopulations highlights the importance of TAC heterogeneity. Finally, in the NSC lineage for intraventricular oligodendrocyte progenitors, miR-17∼92 deletion decreases proliferation and maturation. Together, these findings reveal multiple stage-specific functions of the miR-17∼92 cluster within different adult V-SVZ lineages.


Asunto(s)
Células-Madre Neurales
4.
Science ; 372(6547): 1205-1209, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34112692

RESUMEN

Quiescent neural stem cells (NSCs) in the adult mouse ventricular-subventricular zone (V-SVZ) undergo activation to generate neurons and some glia. Here we show that platelet-derived growth factor receptor beta (PDGFRß) is expressed by adult V-SVZ NSCs that generate olfactory bulb interneurons and glia. Selective deletion of PDGFRß in adult V-SVZ NSCs leads to their release from quiescence, uncovering gliogenic domains for different glial cell types. These domains are also recruited upon injury. We identify an intraventricular oligodendrocyte progenitor derived from NSCs inside the brain ventricles that contacts supraependymal axons. Together, our findings reveal that the adult V-SVZ contains spatial domains for gliogenesis, in addition to those for neurogenesis. These gliogenic NSC domains tend to be quiescent under homeostasis and may contribute to brain plasticity.


Asunto(s)
Células Madre Adultas/fisiología , Ventrículos Cerebrales/fisiología , Ventrículos Laterales/fisiología , Células-Madre Neurales/fisiología , Neuroglía/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Astrocitos/citología , Astrocitos/fisiología , Axones/fisiología , Diferenciación Celular , División Celular , Ventrículos Cerebrales/citología , Epéndimo/citología , Epéndimo/fisiología , Femenino , Perfilación de la Expresión Génica , Homeostasis , Ventrículos Laterales/citología , Masculino , Ratones , Neurogénesis , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Oligodendroglía/citología , Oligodendroglía/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética
5.
Science ; 369(6500): 143-144, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32646987

Asunto(s)
Encéfalo , Organoides , Heces , Humanos
6.
Cell Rep ; 26(2): 394-406.e5, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30625322

RESUMEN

The ventricular-subventricular zone (V-SVZ) harbors adult neural stem cells. V-SVZ neural stem cells exhibit features of astrocytes, have a regional identity, and depending on their location in the lateral or septal wall of the lateral ventricle, generate different types of neuronal and glial progeny. We performed large-scale single-cell RNA sequencing to provide a molecular atlas of cells from the lateral and septal adult V-SVZ of male and female mice. This revealed regional and sex differences among adult V-SVZ cells. We uncovered lineage potency bias at the single-cell level among lateral and septal wall astrocytes toward neurogenesis and oligodendrogenesis, respectively. Finally, we identified transcription factor co-expression modules marking key temporal steps in neurogenic and oligodendrocyte lineage progression. Our data suggest functionally important spatial diversity in neurogenesis and oligodendrogenesis in the adult brain and reveal molecular correlates of adult NSC dormancy and lineage specialization.


Asunto(s)
Linaje de la Célula , Ventrículos Laterales/citología , Células-Madre Neurales/citología , Análisis de la Célula Individual/métodos , Transcriptoma , Animales , Astrocitos/citología , Astrocitos/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Especificidad de Órganos
7.
Neuron ; 98(2): 246-248, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29673477

RESUMEN

Obernier et al. (2018) show that the primary mode of division of adult ventricular-subventricular zone (V-SVZ) neural stem cells is symmetric, with the majority generating two non-stem cell progeny, and a minority self-renewing. This discovery has important implications for understanding stem cell dynamics and adult neurogenesis.


Asunto(s)
Células Madre Adultas/fisiología , División Celular/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Adulto , Animales , Linaje de la Célula/fisiología , Humanos
8.
Nat Protoc ; 13(4): 738-751, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29565899

RESUMEN

The vasculature is emerging as a key contributor to brain function during neurodevelopment and in mature physiological and pathological states. The brain vasculature itself also exhibits regional heterogeneity, highlighting the need to develop approaches for purifying cells from different microregions. Previous approaches for isolation of endothelial cells and pericytes have predominantly required transgenic mice and large amounts of tissue, and have resulted in impure populations. In addition, the prospective purification of brain pericytes has been complicated by the fact that widely used pericyte markers are also expressed by other cell types in the brain. Here, we describe the detailed procedures for simultaneous isolation of pure populations of endothelial cells and pericytes directly from adult mouse brain microregions using fluorescence-activated cell sorting (FACS) with antibodies against CD31 (endothelial cells) and CD13 (pericytes). This protocol is scalable and takes ∼5 h, including microdissection of the region of interest, enzymatic tissue dissociation, immunostaining, and FACS. This protocol allows the isolation of brain vascular cells from any mouse strain under diverse conditions; these cells can be used for multiple downstream applications, including in vitro and in vivo experiments, and transcriptomic, proteomic, metabolomic, epigenomic, and single-cell analysis.


Asunto(s)
Encéfalo/citología , Células Endoteliales/fisiología , Citometría de Flujo/métodos , Pericitos/fisiología , Animales , Anticuerpos/metabolismo , Antígenos CD13/metabolismo , Técnica del Anticuerpo Fluorescente , Ratones , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Coloración y Etiquetado/métodos
9.
Acta Neuropathol ; 135(3): 337-361, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29368213

RESUMEN

The barrier between the blood and the ventricular cerebrospinal fluid (CSF) is located at the choroid plexuses. At the interface between two circulating fluids, these richly vascularized veil-like structures display a peculiar morphology explained by their developmental origin, and fulfill several functions essential for CNS homeostasis. They form a neuroprotective barrier preventing the accumulation of noxious compounds into the CSF and brain, and secrete CSF, which participates in the maintenance of a stable CNS internal environment. The CSF circulation plays an important role in volume transmission within the developing and adult brain, and CSF compartments are key to the immune surveillance of the CNS. In these contexts, the choroid plexuses are an important source of biologically active molecules involved in brain development, stem cell proliferation and differentiation, and brain repair. By sensing both physiological changes in brain homeostasis and peripheral or central insults such as inflammation, they also act as sentinels for the CNS. Finally, their role in the control of immune cell traffic between the blood and the CSF confers on the choroid plexuses a function in neuroimmune regulation and implicates them in neuroinflammation. The choroid plexuses, therefore, deserve more attention while investigating the pathophysiology of CNS diseases and related comorbidities.


Asunto(s)
Barrera Hematoencefálica/anatomía & histología , Barrera Hematoencefálica/metabolismo , Ventrículos Cerebrales/anatomía & histología , Ventrículos Cerebrales/metabolismo , Líquido Cefalorraquídeo/metabolismo , Animales , Barrera Hematoencefálica/patología , Ventrículos Cerebrales/patología , Humanos , Neuroprotección/fisiología
10.
Science ; 356(6345): 1383-1386, 2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28619719

RESUMEN

Neural stem cells (NSCs) in specialized niches in the adult mammalian brain generate neurons throughout life. NSCs in the adult mouse ventricular-subventricular zone (V-SVZ) exhibit a regional identity and, depending on their location, generate distinct olfactory bulb interneuron subtypes. Here, we show that the hypothalamus, a brain area regulating physiological states, provides long-range regionalized input to the V-SVZ niche and can regulate specific NSC subpopulations. Hypothalamic proopiomelanocortin neurons selectively innervate the anterior ventral V-SVZ and promote the proliferation of Nkx2.1+ NSCs and the generation of deep granule neurons. Accordingly, hunger and satiety regulate adult neurogenesis by modulating the activity of this hypothalamic-V-SVZ connection. Our findings reveal that neural circuitry, via mosaic innervation of the V-SVZ, can recruit distinct NSC pools, allowing on-demand neurogenesis in response to physiology and environmental signals.


Asunto(s)
Células Madre Adultas/metabolismo , Hipotálamo/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis , Animales , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Ratones , Vías Nerviosas
11.
Stem Cell Reports ; 8(5): 1421-1429, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28434940

RESUMEN

Characterization of non-neoplastic and malignant human stem cell populations in their native state can provide new insights into gliomagenesis. Here we developed a purification strategy to directly isolate EGFR+/- populations from human germinal matrix (GM) and adult subventricular zone autopsy tissues, and from de novo glioblastoma (GBM) resections, enriching for cells capable of binding EGF ligand (LBEGFR+), and uniquely compared their functional and molecular properties. LBEGFR+ populations in both GM and GBM encompassed all sphere-forming cells and displayed proliferative stem cell properties in vitro. In xenografts, LBEGFR+ GBM cells showed robust tumor initiation and progression to high-grade, infiltrative gliomas. Whole-transcriptome sequencing analysis confirmed enrichment of proliferative pathways in both developing and neoplastic freshly isolated EGFR+ populations, and identified both unique and shared sets of genes. The ability to prospectively isolate stem cell populations using native ligand-binding capacity opens new doors onto understanding both normal human development and tumor cell biology.


Asunto(s)
Neoplasias Encefálicas/patología , Proliferación Celular , Glioblastoma/patología , Células Madre Neoplásicas/fisiología , Células-Madre Neurales/fisiología , Animales , Neoplasias Encefálicas/metabolismo , Separación Celular/métodos , Células Cultivadas , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Humanos , Masculino , Ratones SCID , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/trasplante , Células-Madre Neurales/metabolismo , Cultivo Primario de Células/métodos , Transcriptoma , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Bio Protoc ; 7(24)2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29516026

RESUMEN

Direct isolation of human neural and glioma stem cells from fresh tissues permits their biological study without prior culture and may capture novel aspects of their molecular phenotype in their native state. Recently, we demonstrated the ability to prospectively isolate stem cell populations from fresh human germinal matrix and glioblastoma samples, exploiting the ability of cells to bind the Epidermal Growth Factor (EGF) ligand in fluorescence-activated cell sorting (FACS). We demonstrated that FACS-isolated EGF-bound neural and glioblastoma populations encompass the sphere-forming colonies in vitro, and are capable of both self-renewal and multilineage differentiation. Here we describe in detail the purification methodology of EGF-bound (i.e., EGFR+) human neural and glioma cells with stem cell properties from fresh postmortem and surgical tissues. The ability to prospectively isolate stem cell populations using native ligand-binding ability opens new doors for understanding both normal and tumor cell biology in uncultured conditions, and is applicable for various downstream molecular sequencing studies at both population and single-cell resolution.

13.
Wiley Interdiscip Rev Dev Biol ; 5(6): 640-658, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27647730

RESUMEN

Neural stem cells (NSCs) reside in specialized niches in the adult mammalian brain. The ventricular-subventricular zone (V-SVZ), adjacent to the lateral ventricles, gives rise to olfactory bulb (OB) neurons, and some astrocytes and oligodendrocytes throughout life. In vitro assays have been widely used to retrospectively identify NSCs. However, cells that behave as stem cells in vitro do not reflect the identity, diversity, and behavior of NSCs in vivo. Novel tools including fluorescence activated cell sorting, lineage-tracing, and clonal analysis have uncovered multiple layers of adult V-SVZ NSC heterogeneity, including proliferation state and regional identity. In light of these findings, we reexamine the concept of adult NSCs, considering heterogeneity as a key parameter for analyzing their dynamics in vivo. V-SVZ NSCs form a mosaic of quiescent (qNSCs) and activated cells (aNSCs) that reside in regionally distinct microdomains, reflecting their regional embryonic origins, and give rise to specific subtypes of OB interneurons. Prospective purification and transcriptome analysis of qNSCs and aNSCs has illuminated their molecular and functional properties. qNSCs are slowly dividing, have slow kinetics of neurogenesis in vivo, can be recruited to regenerate the V-SVZ, and only rarely give rise to in vitro colonies. aNSCs are highly proliferative, undergo rapid clonal expansion of the neurogenic lineage in vivo, and readily form in vitro colonies. Key open questions remain about stem cell dynamics in vivo and the lineage relationship between qNSCs and aNSCs under homeostasis and regeneration, as well as context-dependent plasticity of regionally distinct adult NSCs under different external stimuli. WIREs Dev Biol 2016, 5:640-658. doi: 10.1002/wdev.248 For further resources related to this article, please visit the WIREs website.


Asunto(s)
Células Madre Adultas/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Nicho de Células Madre/fisiología , Adulto , Células Madre Adultas/citología , Diferenciación Celular , Humanos , Células-Madre Neurales/citología
14.
Cell Stem Cell ; 19(5): 643-652, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27452173

RESUMEN

Specialized niches support the lifelong maintenance and function of tissue-specific stem cells. Adult neural stem cells in the ventricular-subventricular zone (V-SVZ) contact the cerebrospinal fluid (CSF), which flows through the lateral ventricles. A largely ignored component of the V-SVZ stem cell niche is the lateral ventricle choroid plexus (LVCP), a primary producer of CSF. Here we show that the LVCP, in addition to performing important homeostatic support functions, secretes factors that promote colony formation and proliferation of purified quiescent and activated V-SVZ stem cells and transit-amplifying cells. The functional effect of the LVCP secretome changes throughout the lifespan, with activated neural stem cells being especially sensitive to age-related changes. Transcriptome analysis identified multiple factors that recruit colony formation and highlights novel facets of LVCP function. Thus, the LVCP is a key niche compartment that translates physiological changes into molecular signals directly affecting neural stem cell behavior.


Asunto(s)
Células Madre Adultas/citología , Envejecimiento/fisiología , Plexo Coroideo/citología , Células-Madre Neurales/citología , Transducción de Señal , Nicho de Células Madre , Células Madre Adultas/metabolismo , Animales , Proliferación Celular , Plexo Coroideo/metabolismo , Células Clonales , Perfilación de la Expresión Génica , Ventrículos Laterales/citología , Ratones , Células-Madre Neurales/metabolismo
15.
Epigenetics ; 10(6): 496-507, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25996283

RESUMEN

Several signaling pathways important for the proliferation and growth of brain cells are pathologically dysregulated in gliomas, including the epidermal growth factor receptor (EGFR). Expression of EGFR is high in neural progenitors during development and in gliomas but decreases significantly in most adult brain regions. Here we show that EGFR expression is maintained in the astrocyte ribbon of the adult human subventricular zone. The transcriptional regulation of EGFR expression is poorly understood. To investigate the role of epigenetics on EGFR regulation in the contexts of neural development and gliomagenesis, we measured levels of DNA methylation and histone H3 modifications at the EGFR promoter in human brain tissues, glioma specimens, and EGFR-expressing neural cells, acutely isolated from their native niche. While DNA was constitutively hypomethylated in non-neoplastic and glioma samples, regardless of their EGFR-expression status, the activating histone modifications H3K27ac and H3K4me3 were enriched only when EGFR is highly expressed (developing germinal matrix and gliomas). Conversely, repressive H3K27me3 marks predominated in adult white matter where EGFR is repressed. Furthermore, the histone methyltransferase core enzyme ASH2L was bound at EGFR in the germinal matrix and in gliomas where levels of H3K4me3 are high, and the histone acetyltransferase P300 was bound in samples with H3K27ac enrichment. Our studies use human cells and tissues undisturbed by cell-culture artifact, and point to an important, locus-specific role for chromatin remodeling in EGFR expression in human neural development that may be dysregulated during gliomagenesis, unraveling potential novel targets for future drug therapy.


Asunto(s)
Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Receptores ErbB/biosíntesis , Glioma/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Factores de Transcripción p300-CBP/genética , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Receptores ErbB/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Código de Histonas , Histonas/genética , Humanos , Neurogénesis/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal , Factores de Transcripción/metabolismo , Factores de Transcripción p300-CBP/biosíntesis
16.
J Neurosci ; 35(11): 4528-39, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25788671

RESUMEN

Adult neural stem cells reside in specialized niches. In the ventricular-subventricular zone (V-SVZ), quiescent neural stem cells (qNSCs) become activated (aNSCs), and generate transit amplifying cells (TACs), which give rise to neuroblasts that migrate to the olfactory bulb. The vasculature is an important component of the adult neural stem cell niche, but whether vascular cells in neurogenic areas are intrinsically different from those elsewhere in the brain is unknown. Moreover, the contribution of pericytes to the neural stem cell niche has not been defined. Here, we describe a rapid FACS purification strategy to simultaneously isolate primary endothelial cells and pericytes from brain microregions of nontransgenic mice using CD31 and CD13 as surface markers. We compared the effect of purified vascular cells from a neurogenic (V-SVZ) and non-neurogenic brain region (cortex) on the V-SVZ stem cell lineage in vitro. Endothelial and pericyte diffusible signals from both regions differentially promote the proliferation and neuronal differentiation of qNSCs, aNSCs, and TACs. Unexpectedly, diffusible cortical signals had the most potent effects on V-SVZ proliferation and neurogenesis, highlighting the intrinsic capacity of non-neurogenic vasculature to support stem cell behavior. Finally, we identify PlGF-2 as an endothelial-derived mitogen that promotes V-SVZ cell proliferation. This purification strategy provides a platform to define the functional and molecular contribution of vascular cells to stem cell niches and other brain regions under different physiological and pathological states.


Asunto(s)
Células Madre Adultas/fisiología , Linaje de la Célula/fisiología , Ventrículos Cerebrales/fisiología , Endotelio Vascular/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Animales , Proliferación Celular/fisiología , Células Cultivadas , Ventrículos Cerebrales/citología , Endotelio Vascular/citología , Masculino , Ratones
17.
Neuron ; 83(3): 507-9, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25102554

RESUMEN

A major question in studying adult neurogenesis is the source and identity of molecules that regulate stem cells. In this issue of Neuron, uncover that endothelial-derived NT-3 acts as a mediator of quiescence in the V-SVZ adult neural stem cell niche.


Asunto(s)
Células Endoteliales/metabolismo , Células-Madre Neurales/citología , Neuronas/citología , Neurotrofina 3/metabolismo , Óxido Nítrico/metabolismo , Animales
18.
Neuron ; 82(3): 545-59, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24811379

RESUMEN

Adult neurogenic niches harbor quiescent neural stem cells; however, their in vivo identity has been elusive. Here, we prospectively isolate GFAP(+)CD133(+) (quiescent neural stem cells [qNSCs]) and GFAP(+)CD133(+)EGFR(+) (activated neural stem cells [aNSCs]) from the adult ventricular-subventricular zone. aNSCs are rapidly cycling, highly neurogenic in vivo, and enriched in colony-forming cells in vitro. In contrast, qNSCs are largely dormant in vivo, generate olfactory bulb interneurons with slower kinetics, and only rarely form colonies in vitro. Moreover, qNSCs are Nestin negative, a marker widely used for neural stem cells. Upon activation, qNSCs upregulate Nestin and EGFR and become highly proliferative. Notably, qNSCs and aNSCs can interconvert in vitro. Transcriptome analysis reveals that qNSCs share features with quiescent stem cells from other organs. Finally, small-molecule screening identified the GPCR ligands, S1P and PGD2, as factors that actively maintain the quiescent state of qNSCs.


Asunto(s)
Células Madre Adultas/fisiología , Ventrículos Laterales/citología , Ventrículos Laterales/fisiología , Células-Madre Neurales/fisiología , Animales , Astrocitos/fisiología , Biomarcadores/metabolismo , Separación Celular/métodos , Células Cultivadas , Humanos , Ratones , Ratones Transgénicos , Estudios Prospectivos , Transcriptoma/genética
19.
Am J Phys Med Rehabil ; 93(11 Suppl 3): S132-44, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24800720

RESUMEN

Given their capacity to regenerate cells lost through injury or disease, stem cells offer new vistas into possible treatments for degenerative diseases and their underlying causes. As such, stem cell biology is emerging as a driving force behind many studies in regenerative medicine. This review focuses on the current understanding of the applications of stem cells in treating ailments of the human brain, with an emphasis on neurodegenerative diseases. Two types of neural stem cells are discussed: endogenous neural stem cells residing within the adult brain and pluripotent stem cells capable of forming neural cells in culture. Endogenous neural stem cells give rise to neurons throughout life, but they are restricted to specialized regions in the brain. Elucidating the molecular mechanisms regulating these cells is key in determining their therapeutic potential as well as finding mechanisms to activate dormant stem cells outside these specialized microdomains. In parallel, patient-derived stem cells can be used to generate neural cells in culture, providing new tools for disease modeling, drug testing, and cell-based therapies. Turning these technologies into viable treatments will require the integration of basic science with clinical skills in rehabilitation.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Enfermedades Neurodegenerativas/terapia , Enfermedad de Parkinson/terapia , Trasplante de Células Madre/métodos , Células Madre/citología , Esclerosis Amiotrófica Lateral/diagnóstico , Animales , Sistema Nervioso Central/citología , Estudios de Cohortes , Terapia Combinada , Modelos Animales de Enfermedad , Humanos , Enfermedades Neurodegenerativas/diagnóstico , Enfermedad de Parkinson/diagnóstico , Modalidades de Fisioterapia , Pronóstico , Calidad de Vida , Recuperación de la Función , Medicina Regenerativa/métodos , Medición de Riesgo , Células Madre/fisiología , Resultado del Tratamiento
20.
Curr Opin Neurobiol ; 23(6): 935-42, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24090877

RESUMEN

Stem cells persist in specialized niches in the adult mammalian brain. Emerging findings highlight the complexity and heterogeneity of different compartments in the niche, as well as the presence of local signaling microdomains. Stem cell quiescence and activation are regulated not only by anchorage to the niche and diffusible signals, but also by biophysical properties, including fluid dynamics. Importantly, the adult neural stem cell niche integrates both local and systemic changes, reflecting the physiological state of the organism. Moreover niche signaling is bidirectional, with stem cells and their progeny and niche cells dynamically interacting with each other during homeostasis, regeneration and aging.


Asunto(s)
Células Madre Adultas/citología , Envejecimiento/fisiología , Homeostasis/fisiología , Regeneración Nerviosa/fisiología , Células-Madre Neurales/citología , Nicho de Células Madre/fisiología , Células Madre Adultas/metabolismo , Animales , Humanos , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...