Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cardiovasc Digit Health J ; 5(1): 29-35, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38390580

RESUMEN

Background: Multiple smart devices capable of automatically detecting atrial fibrillation (AF) based on single-lead electrocardiograms (SL-ECG) are presently available. The rate of inconclusive tracings by manufacturers' algorithms is currently too high to be clinically useful. Method: This is a prospective, observational study enrolling patients presenting to a cardiology service at a tertiary referral center. We assessed the clinical value of applying a smart device artificial intelligence (AI)-based algorithm for detecting AF from 4 commercially available smart devices (AliveCor KardiaMobile, Apple Watch 6, Fitbit Sense, and Samsung Galaxy Watch3). Patients underwent a nearly simultaneous 12-lead ECG and 4 smart device SL-ECGs. The novel AI algorithm (PulseAI, Belfast, United Kingdom) was compared with each manufacturer's algorithm. Results: We enrolled 206 patients (31% female, median age 64 years). AF was present in 60 patients (29%). Sensitivity and specificity for the detection of AF by the novel AI algorithm vs manufacturer algorithm were 88% vs 81% (P = .34) and 97% vs 77% (P < .001) for the AliveCor KardiaMobile, 86% vs 81% (P = .45) and 95% vs 83% (P < .001) for the Apple Watch 6, 91% vs 67% (P < .01) and 94% vs 82% (P < .001) for the Fitbit Sense, and 86% vs 82% (P = .63) and 94% vs 80% (P < .001) for the Samsung Galaxy Watch3, respectively. In addition, the proportion of SL-ECGs with an inconclusive diagnosis (1.2%) was significantly lower for all smart devices using the AI-based algorithm compared to manufacturer's algorithms (14%-17%), P < .001. Conclusion: A novel AI algorithm reduced the rate of inconclusive SL-ECG diagnosis massively while maintaining sensitivity and improving the specificity compared to the manufacturers' algorithms.

2.
J Electrocardiol ; 76: 17-21, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36395631

RESUMEN

BACKGROUND: Mobile Cardiac Outpatient Telemetry (MCOT) can be used to screen high risk patients for atrial fibrillation (AF). These devices rely primarily on algorithmic detection of AF events, which are then stored and transmitted to a clinician for review. It is critical the positive predictive value (PPV) of MCOT detected AF is high, and this often leads to reduced sensitivity, as device manufacturers try to limit false positives. OBJECTIVE: The purpose of this study was to design a two stage classifier using artificial intelligence (AI) to improve the PPV of MCOT detected atrial fibrillation episodes whilst maintaining high levels of detection sensitivity. METHODS: A low complexity, RR-interval based, AF classifier was paired with a deep convolutional neural network (DCNN) to create a two-stage classifier. The DCNN was limited in size to allow it to be embedded on MCOT devices. The DCNN was trained on 491,727 ECGs from a proprietary database and contained 128,612 parameters requiring only 158 KB of storage. The performance of the two-stage classifier was then assessed using publicly available datasets. RESULTS: The sensitivity of AF detected by the low complexity classifier was high across all datasets (>93%) however the PPV was poor (<76%). Subsequent analysis by the DCNN increased episode PPV across all datasets substantially (>11%), with only a minor loss in sensitivity (<5%). This increase in PPV was due to a decrease in the number of false positive detections. Further analysis showed that DCNN processing was only required on around half of analysis windows, offering a significant computational saving against using the DCNN as a one-stage classifier. CONCLUSION: DCNNs can be combined with existing MCOT classifiers to increase the PPV of detected AF episodes. This reduces the review burden for physicians and can be achieved with only a modest decrease in sensitivity.


Asunto(s)
Fibrilación Atrial , Aprendizaje Profundo , Humanos , Fibrilación Atrial/diagnóstico , Electrocardiografía , Inteligencia Artificial , Redes Neurales de la Computación
3.
J Electrocardiol ; 74: 154-157, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36283253

RESUMEN

Deep Convolutional Neural Networks (DCNNs) have been shown to provide improved performance over traditional heuristic algorithms for the detection of arrhythmias from ambulatory ECG recordings. However, these DCNNs have primarily been trained and tested on device-specific databases with standardized electrode positions and uniform sampling frequencies. This work explores the possibility of training a DCNN for Atrial Fibrillation (AF) detection on a database of single­lead ECG rhythm strips extracted from resting 12­lead ECGs. We then test the performance of the DCNN on recordings from ambulatory ECG devices with different recording leads and sampling frequencies. We developed an extensive proprietary resting 12­lead ECG dataset of 549,211 patients. This dataset was randomly split into a training set of 494,289 patients and a testing set of the remaining 54,922 patients. We trained a 34-layer convolutional DCNN to detect AF and other arrhythmias on this dataset. The DCNN was then validated on two Physionet databases commonly used to benchmark automated ECG algorithms (1) MIT-BIH Arrhythmia Database and (2) MIT-BIH Atrial Fibrillation Database. Validation was performed following the EC57 guidelines, with performance assessed by gross episode and duration sensitivity and positive predictive value (PPV). Finally, validation was also performed on a selection of rhythm strips from an ambulatory ECG patch that a committee of board-certified cardiologists annotated. On MIT-BIH, The DCNN achieved a sensitivity of 100% and 84% PPV in detecting episodes of AF. and 100% sensitivity and 94% PPV in quantifying AF episode duration. On AFDB, The DCNN achieved a sensitivity of 94% and PPV of 98% in detecting episodes of AF, and 98% sensitivity and 100% PPV in quantifying AF episode duration. On the patch database, the DCNN demonstrated performance that was closely comparable to that of a cardiologist. The results indicate that DCNN models can learn features that generalize between resting 12­lead and ambulatory ECG recordings, allowing DCNNs to be device agnostic for detecting arrhythmias from single­lead ECG recordings and enabling a range of clinical applications.


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/diagnóstico , Electrocardiografía , Descanso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...