Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 62(11): 1735-1743, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37167569

RESUMEN

Genetic tags are transformative tools for investigating the function, localization, and interactions of cellular proteins. Most studies today are reliant on selective labeling of more than one protein to obtain comprehensive information on a protein's behavior in situ. Some proteins can be analyzed by fusion to a protein tag, such as green fluorescent protein, HaloTag, or SNAP-Tag. Other proteins benefit from labeling via small peptide tags, such as the recently reported versatile interacting peptide (VIP) tags. VIP tags enable observations of protein localization and trafficking with bright fluorophores or nanoparticles. Here, we expand the VIP toolkit by presenting two new tags: TinyVIPER and PunyVIPER. These two tags were designed for use with MiniVIPER for labeling up to three distinct proteins at once in cells. Labeling is mediated by the formation of a high-affinity, biocompatible heterodimeric coiled coil. Each tag was validated by fluorescence microscopy, including observation of transferrin receptor 1 trafficking in live cells. We verified that labeling via each tag is highly specific for one- or two-color imaging. Last, the self-sorting tags were used for simultaneous labeling of three protein targets (i.e., TOMM20, histone 2B, and actin) in fixed cells, highlighting their utility for multicolor microscopy. MiniVIPER, TinyVIPER, and PunyVIPER are small and robust peptide tags for selective labeling of cellular proteins.


Asunto(s)
Colorantes Fluorescentes , Péptidos , Proteínas Fluorescentes Verdes/genética , Histonas , Microscopía Fluorescente/métodos , Coloración y Etiquetado
2.
ACS Chem Biol ; 16(4): 671-681, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33734687

RESUMEN

Recent advances in genome engineering have expanded our capabilities to study proteins in their natural states. In particular, the ease and scalability of knocking-in small peptide tags has enabled high throughput tagging and analysis of endogenous proteins. To improve enrichment capacities and expand the functionality of knock-ins using short tags, we developed the tag-assisted split enzyme complementation (TASEC) approach, which uses two orthogonal small peptide tags and their cognate binders to conditionally drive complementation of a split enzyme upon labeled protein expression. Using this approach, we have engineered and optimized the tag-assisted split HaloTag complementation system (TA-splitHalo) and demonstrated its versatile applications in improving the efficiency of knock-in cell enrichment, detection of protein-protein interaction, and isolation of biallelic gene edited cells through multiplexing.


Asunto(s)
Enzimas/metabolismo , Proteínas/metabolismo , Citometría de Flujo , Colorantes Fluorescentes/química , Células HEK293 , Humanos , Unión Proteica
3.
Biochemistry ; 59(33): 3051-3059, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32786411

RESUMEN

Microscopy allows researchers to interrogate proteins within a cellular context. To deliver protein-specific contrast, we developed a new class of genetically encoded peptide tags called versatile interacting peptide (VIP) tags. VIP tags deliver a reporter to a target protein via the formation of a heterodimer between the peptide tag and an exogenously added probe peptide. We report herein a new VIP tag named MiniVIPER, which is comprised of a MiniE-MiniR heterodimer. We first demonstrated the selectivity of MiniVIPER by labeling three cellular targets: transferrin receptor 1 (TfR1), histone protein H2B, and the mitochondrial protein TOMM20. We showed that either MiniE or MiniR could serve as the genetically encoded tag. Next, we demonstrated MiniVIPER's versatility by generating five spectrally distinct probe peptides to label tagged TfR1 on live cells. Lastly, we demonstrated two new applications for VIP tags. First, we used MiniVIPER in combination with another VIP tag, VIPER, to selectively label two different proteins in a single cell (e.g., TfR1 with H2B or TOMM20). Second, we used MiniVIPER to translocate a fluorescent protein to the nucleus through in situ dimerization of mCherry with H2B-mEmerald. In summary, MiniVIPER is a new peptide tag that enables multitarget imaging and artificial dimerization of proteins in cells.


Asunto(s)
Imagen Molecular/métodos , Péptidos/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Coloración y Etiquetado/métodos , Dimerización , Colorantes Fluorescentes/química , Humanos , Microscopía Fluorescente/métodos , Señales de Clasificación de Proteína/fisiología , Transporte de Proteínas , Análisis de la Célula Individual/métodos
4.
Bio Protoc ; 9(21): e3412, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33654912

RESUMEN

Versatile Interacting Peptide (VIP) tags are a new class of genetically-encoded tag designed for imaging cellular proteins by fluorescence and electron microscopy. In 2018, we reported the VIPER tag ( Doh et al., 2018 ), which contains two elements: a genetically-encoded peptide tag (i.e., CoilE) and a probe peptide (i.e., CoilR). These two peptides deliver contrast to a protein of interest by forming a specific, high-affinity heterodimer. The probe peptide was designed with a single cysteine residue for site-specific modification via thiol-maleimide chemistry. This feature can be used to attach a variety of biophysical reporters to the peptide, including bright fluorophores for fluorescence microscopy or electron-dense nanoparticles for electron microscopy. In this Bio-Protocol, we describe our methods for expressing and purifying recombinant CoilR. Additionally, we describe protocols for making fluorescent or biotinylated probe peptides for labeling CoilE-tagged cellular proteins. This protocol is complemented by two other Bio-Protocols outlining the use of VIPER ( Doh et al., 2019a and 2019b).

5.
Bio Protoc ; 9(21): e3414, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33654913

RESUMEN

Advances in fluorescence microscopy (FM), electron microscopy (EM), and correlative light and EM (CLEM) offer unprecedented opportunities for studying diverse proteins and nanostructures involved in fundamental cell biology. It is now possible to visualize and quantify the spatial organization of cellular proteins and other macromolecules by FM, EM, and CLEM. However, tagging and tracking cellular proteins across size scales is restricted by the scarcity of methods for attaching appropriate reporter chemistries to target proteins. Namely, there are few genetic tags compatible with EM. To overcome these issues we developed Versatile Interacting Peptide (VIP) tags, genetically-encoded peptide tags that can be used to image proteins by fluorescence and EM. VIPER, a VIP tag, can be used to label cellular proteins with bright, photo-stable fluorophores for FM or electron-dense nanoparticles for EM. In this Bio-Protocol, we provide an instructional guide for implementing VIPER for imaging a cell-surface receptor by CLEM. This protocol is complemented by two other Bio-Protocols outlining the use of VIPER ( Doh et al., 2019a and 2019b).

6.
Bio Protoc ; 9(21)2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32665966

RESUMEN

Genetically-encoded tags are useful tools for multicolor and multi-scale cellular imaging. Versatile Interacting Peptide (VIP) tags, such as VIPER, are new genetically-encoded tags that can be used in various imaging applications. VIP tags consist of a coiled-coil heterodimer, with one peptide serving as the genetic tag and the other ("probe peptide") delivering a reporter compatible with imaging. Heterodimer formation is rapid and specific, allowing proteins to be selectively labeled for live-cell and fixed-cell imaging. In this Bio-Protocol, we include a detailed guide for implementing the VIPER technology for imaging receptors on live cells and intracellular targets in fixed cells. This protocol is complemented by two other Bio-Protocols outlining the use of VIPER (Doh et al., 2019a and 2019b).

7.
Proc Natl Acad Sci U S A ; 115(51): 12961-12966, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30518560

RESUMEN

Many discoveries in cell biology rely on making specific proteins visible within their native cellular environment. There are various genetically encoded tags, such as fluorescent proteins, developed for fluorescence microscopy (FM). However, there are almost no genetically encoded tags that enable cellular proteins to be observed by both FM and electron microscopy (EM). Herein, we describe a technology for labeling proteins with diverse chemical reporters, including bright organic fluorophores for FM and electron-dense nanoparticles for EM. Our technology uses versatile interacting peptide (VIP) tags, a class of genetically encoded tag. We present VIPER, which consists of a coiled-coil heterodimer formed between the genetic tag, CoilE, and a probe-labeled peptide, CoilR. Using confocal FM, we demonstrate that VIPER can be used to highlight subcellular structures or to image receptor-mediated iron uptake. Additionally, we used VIPER to image the iron uptake machinery by correlative light and EM (CLEM). VIPER compared favorably with immunolabeling for imaging proteins by CLEM, and is an enabling technology for protein targets that cannot be immunolabeled. VIPER is a versatile peptide tag that can be used to label and track proteins with diverse chemical reporters observable by both FM and EM instrumentation.


Asunto(s)
Nanopartículas/análisis , Coloración y Etiquetado/métodos , Animales , Células CHO , Línea Celular , Cricetulus , Humanos , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos
8.
Chembiochem ; 18(5): 470-474, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28052473

RESUMEN

Fluorescence microscopy is an essential tool for the biosciences, enabling the direct observation of proteins in their cellular environment. New methods that facilitate attachment of photostable synthetic fluorophores with genetic specificity are needed to advance the frontiers of biological imaging. Here, we describe a new set of small, selective, genetically encoded tags for proteins based on a heterodimeric coiled-coil interaction between two peptides: CoilY and CoilZ. Proteins expressed as a fusion to CoilZ were selectively labeled with the complementary CoilY fluorescent probe peptide. Fluorophore-labeled target proteins were readily detected in cell lysates with high specificity and sensitivity. We found that these versatile interacting peptide (VIP) tags allowed rapid and specific delivery of bright organic dyes or quantum dots to proteins displayed on living cells. Additionally, we validated that either CoilY or CoilZ could serve as the VIP tag, which enabled us to observe two distinct cell-surface protein targets with this one heterodimeric pair.


Asunto(s)
Colorantes Fluorescentes/química , Péptidos/química , Péptidos/metabolismo , Citometría de Flujo , Proteínas Fluorescentes Verdes/química , Microscopía Confocal , Péptidos/genética , Coloración y Etiquetado
9.
ACS Infect Dis ; 2(7): 500-8, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27626102

RESUMEN

New treatments for tuberculosis infection are critical to combat the emergence of multidrug- and extensively drug-resistant Mycobacterium tuberculosis (Mtb). We report the characterization of a diphenylether-modified adamantyl 1,2-diamine that we refer to as TBL-140, which has a minimal inhibitory concentration (MIC99) of 1.2 µg/mL. TBL-140 is effective against drug-resistant Mtb and nonreplicating bacteria. In addition, TBL-140 eliminates expansion of Mtb in cell culture infection assays at its MIC. To define the mechanism of action of this compound, we performed a spontaneous mutant screen and biochemical assays. We determined that TBL-140 treatment affects the proton motive force (PMF) by perturbing the transmembrane potential (ΔΨ), consistent with a target in the electron transport chain (ETC). As a result, treated bacteria have reduced intracellular ATP levels. We show that TBL-140 exhibits greater metabolic stability than SQ109, a structurally similar compound in clinical trials for treatment of MDR-TB infections. Combined, these results suggest that TBL-140 should be investigated further to assess its potential as an improved therapeutic lead against Mtb.


Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Diaminas/química , Diseño de Fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Éteres Fenílicos/química , Relación Estructura-Actividad , Tuberculosis/tratamiento farmacológico
10.
Protein Sci ; 24(12): 1942-55, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26362239

RESUMEN

Mycobacterium tuberculosis is a pathogenic bacterial species, which is neither Gram positive nor Gram negative. It has a unique cell wall, making it difficult to kill and conferring resistance to antibiotics that disrupt cell wall biosynthesis. Thus, the mycobacterial cell wall is critical to the virulence of these pathogens. Recent work shows that the mycobacterial membrane protein large (MmpL) family of transporters contributes to cell wall biosynthesis by exporting fatty acids and lipidic elements of the cell wall. The expression of the Mycobacterium tuberculosis MmpL proteins is controlled by a complicated regulatory network system. Here we report crystallographic structures of two forms of the TetR-family transcriptional regulator Rv0302, which participates in regulating the expression of MmpL proteins. The structures reveal a dimeric, two-domain molecule with architecture consistent with the TetR family of regulators. Comparison of the two Rv0302 crystal structures suggests that the conformational changes leading to derepression may be due to a rigid body rotational motion within the dimer interface of the regulator. Using fluorescence polarization and electrophoretic mobility shift assays, we demonstrate the recognition of promoter and intragenic regions of multiple mmpL genes by this protein. In addition, our isothermal titration calorimetry and electrophoretic mobility shift experiments indicate that fatty acids may be the natural ligand of this regulator. Taken together, these experiments provide new perspectives on the regulation of the MmpL family of transporters.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/genética , Mycobacterium tuberculosis/metabolismo , Proteínas Bacterianas/genética , Pared Celular/química , Pared Celular/metabolismo , Cristalografía por Rayos X , Ácidos Grasos/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/química , Regiones Promotoras Genéticas , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
11.
J Biol Chem ; 290(47): 28559-28574, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26396194

RESUMEN

The mycobacterial cell wall is critical to the virulence of these pathogens. Recent work shows that the MmpL (mycobacterial membrane protein large) family of transporters contributes to cell wall biosynthesis by exporting fatty acids and lipidic elements of the cell wall. The expression of the Mycobacterium tuberculosis MmpL proteins is controlled by a complex regulatory network, including the TetR family transcriptional regulators Rv3249c and Rv1816. Here we report the crystal structures of these two regulators, revealing dimeric, two-domain molecules with architecture consistent with the TetR family of regulators. Buried extensively within the C-terminal regulatory domains of Rv3249c and Rv1816, we found fortuitous bound ligands, which were identified as palmitic acid (a fatty acid) and isopropyl laurate (a fatty acid ester), respectively. Our results suggest that fatty acids may be the natural ligands of these regulatory proteins. Using fluorescence polarization and electrophoretic mobility shift assays, we demonstrate the recognition of promoter and intragenic regions of multiple mmpL genes by these proteins. Binding of palmitic acid renders these regulators incapable of interacting with their respective operator DNAs, which will result in derepression of the corresponding mmpL genes. Taken together, these experiments provide new perspectives on the regulation of the MmpL family of transporters.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas Bacterianas/química , Cristalografía por Rayos X , Proteínas de Transporte de Membrana/química , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...