Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(15): e202401779, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38363076

RESUMEN

The Li3MX6 compounds (M=Sc, Y, In; X=Cl, Br) are known as promising ionic conductors due to their compatibility with typical metal oxide cathode materials. In this study, we have successfully synthesized γ-Li3ScCl6 using high pressure for the first time in this family. Structural analysis revealed that the high-pressure polymorph crystallizes in the polar and chiral space group P63mc with hexagonal close-packing (hcp) of anions, unlike the ambient-pressure α-Li3ScCl6 and its spinel analog with cubic closed packing (ccp) of anions. Investigation of the known Li3MX6 family further revealed that the cation/anion radius ratio, rM/rX, is the factor that determines which anion sublattice is formed and that in γ-Li3ScCl6, the difference in compressibility between Sc and Cl exceeds the ccp rM/rX threshold under pressure, enabling the ccp-to-hcp conversion. Electrochemical tests of γ-Li3ScCl6 demonstrate improved electrochemical reduction stability. These findings open up new avenues and design principles for lithium solid electrolytes, enabling routes for materials exploration and tuning electrochemical stability without compositional changes or the use of coatings.

2.
Sci Technol Adv Mater ; 23(1): 858-865, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518983

RESUMEN

The thermal conductivity above room temperature is investigated for LaCoO3-based materials showing spin-state and insulator-metal crossovers. A positive temperature coefficient (PTC) of the thermal conductivity is observed during the insulator-metal crossover around 500 K. Our analysis indicates that the phononic thermal transport is also enhanced in addition to the electronic contribution as the insulator-metal crossover takes place. The enhancement of the phononic component is ascribed to the reduction of the incoherent local lattice distortion coupled with the spin/orbital state of each Co3+ ion, which is induced by the enhanced spin-state fluctuation between low and excited spin-states. Moreover, fine tunability for the PTC of the thermal conductivity is demonstrated via doping hole-type carriers into LaCoO3. The observed enhancement ratio of the thermal conductivity κ T (773 K) / κ T (323 K) = 2.6 in La0.95Sr0.05CoO3 is the largest value among oxide materials which exhibit a PTC of their thermal conductivity above room temperature. The thermal rectification ratio is estimated to reach 61% for a hypothetical thermal diode consisting of La0.95Sr0.05CoO3 and LaGaO3, the latter of which is a typical band insulator. These results indicate that utilizing spin-state and orbital degrees of freedom in strongly correlated materials is a useful strategy for tuning thermal transport properties, especially for designing thermal diodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...