Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Br J Haematol ; 204(3): 784-804, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38247114

RESUMEN

Pancytopenia with hypocellular bone marrow is the hallmark of aplastic anaemia (AA) and the diagnosis is confirmed after careful evaluation, following exclusion of alternate diagnosis including hypoplastic myelodysplastic syndromes. Emerging use of molecular cyto-genomics is helpful in delineating immune mediated AA from inherited bone marrow failures (IBMF). Camitta criteria is used to assess disease severity, which along with age and availability of human leucocyte antigen compatible donor are determinants for therapeutic decisions. Supportive care with blood and platelet transfusion support, along with anti-microbial prophylaxis and prompt management of opportunistic infections remain key throughout the disease course. The standard first-line treatment for newly diagnosed acquired severe/very severe AA patients is horse anti-thymocyte globulin and ciclosporin-based immunosuppressive therapy (IST) with eltrombopag or allogeneic haemopoietic stem cell transplant (HSCT) from a matched sibling donor. Unrelated donor HSCT in adults should be considered after lack of response to IST, and up front for young adults with severe infections and a readily available matched unrelated donor. Management of IBMF, AA in pregnancy and in elderly require special attention. In view of the rarity of AA and complexity of management, appropriate discussion in multidisciplinary meetings and involvement of expert centres is strongly recommended to improve patient outcomes.


Asunto(s)
Anemia Aplásica , Hematología , Trasplante de Células Madre Hematopoyéticas , Pancitopenia , Adulto Joven , Humanos , Anciano , Anemia Aplásica/terapia , Inmunosupresores/uso terapéutico , Ciclosporina/uso terapéutico , Trastornos de Fallo de la Médula Ósea/tratamiento farmacológico , Donante no Emparentado , Pancitopenia/tratamiento farmacológico
2.
Blood ; 141(23): 2853-2866, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-36952636

RESUMEN

Biallelic germ line excision repair cross-complementing 6 like 2 (ERCC6L2) variants strongly predispose to bone marrow failure (BMF) and myeloid malignancies, characterized by somatic TP53-mutated clones and erythroid predominance. We present a series of 52 subjects (35 families) with ERCC6L2 biallelic germ line variants collected retrospectively from 11 centers globally, with a follow-up of 1165 person-years. At initial investigations, 32 individuals were diagnosed with BMF and 15 with a hematological malignancy (HM). The subjects presented with 19 different variants of ERCC6L2, and we identified a founder mutation, c.1424delT, in Finnish patients. The median age of the subjects at baseline was 18 years (range, 2-65 years). Changes in the complete blood count were mild despite severe bone marrow (BM) hypoplasia and somatic TP53 mutations, with no significant difference between subjects with or without HMs. Signs of progressive disease included increasing TP53 variant allele frequency, dysplasia in megakaryocytes and/or erythroid lineage, and erythroid predominance in the BM morphology. The median age at the onset of HM was 37.0 years (95% CI, 31.5-42.5; range, 12-65 years). The overall survival (OS) at 3 years was 95% (95% CI, 85-100) and 19% (95% CI, 0-39) for patients with BMF and HM, respectively. Patients with myelodysplastic syndrome or acute myeloid leukemia with mutated TP53 undergoing hematopoietic stem cell transplantation had a poor outcome with a 3-year OS of 28% (95% CI, 0-61). Our results demonstrated the importance of early recognition and active surveillance in patients with biallelic germ line ERCC6L2 variants.


Asunto(s)
Anemia Aplásica , Leucemia Mieloide Aguda , Pancitopenia , Humanos , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Trastornos de Fallo de la Médula Ósea , Leucemia Mieloide Aguda/genética , Anemia Aplásica/genética , Reparación del ADN , Enfermedad Aguda , ADN Helicasas/genética
3.
J Gerontol A Biol Sci Med Sci ; 78(5): 780-789, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-36651908

RESUMEN

The underlying mechanisms of plasma metabolite signatures of human aging and age-related diseases are not clear but telomere attrition and dysfunction are central to both. Dyskeratosis congenita (DC) is associated with mutations in the telomerase enzyme complex (TERT, TERC, and DKC1) and progressive telomere attrition. We analyzed the effect of telomere attrition on senescence-associated metabolites in fibroblast-conditioned media and DC patient plasma. Samples were analyzed by gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. We showed extracellular citrate was repressed by canonical telomerase function in vitro and associated with DC leukocyte telomere attrition in vivo, leading to the hypothesis that altered citrate metabolism detects telomere dysfunction. However, elevated citrate and senescence factors only weakly distinguished DC patients from controls, whereas elevated levels of other tricarboxylic acid cycle (TCA) metabolites, lactate, and especially pyruvate distinguished them with high significance. The DC plasma signature most resembled that of patients with loss of function pyruvate dehydrogenase complex mutations and that of older subjects but significantly not those of type 2 diabetes, lactic acidosis, or elevated mitochondrial reactive oxygen species. Additionally, our data are consistent with further metabolism of citrate and lactate in the liver and kidneys. Citrate uptake in certain organs modulates age-related disease in mice and our data have similarities with age-related disease signatures in humans. Our results have implications for the role of telomere dysfunction in human aging in addition to its early diagnosis and the monitoring of anti-senescence therapeutics, especially those designed to improve telomere function.


Asunto(s)
Diabetes Mellitus Tipo 2 , Disqueratosis Congénita , Telomerasa , Humanos , Animales , Ratones , Disqueratosis Congénita/genética , Disqueratosis Congénita/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo , Mutación , Citratos , Lactatos , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
4.
Br J Haematol ; 199(5): 754-764, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36156210

RESUMEN

Despite the inclusion of inherited myeloid malignancies as a separate entity in the World Health Organization Classification, many established predisposing loci continue to lack functional characterization. While germline mutations in the DNA repair factor ERCC excision repair 6 like 2 (ERCC6L2) give rise to bone marrow failure and acute myeloid leukaemia, their consequences on normal haematopoiesis remain unclear. To functionally characterise the dual impact of germline ERCC6L2 loss on human primary haematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs), we challenged ERCC6L2-silenced and patient-derived cells ex vivo. Here, we show for the first time that ERCC6L2-deficiency in HSPCs significantly impedes their clonogenic potential and leads to delayed erythroid differentiation. This observation was confirmed by CIBERSORTx RNA-sequencing deconvolution performed on ERCC6L2-silenced erythroid-committed cells, which demonstrated higher proportions of polychromatic erythroblasts and reduced orthochromatic erythroblasts versus controls. In parallel, we demonstrate that the consequences of ERCC6L2-deficiency are not limited to HSPCs, as we observe a striking phenotype in patient-derived and ERCC6L2-silenced MSCs, which exhibit enhanced osteogenesis and suppressed adipogenesis. Altogether, our study introduces a valuable surrogate model to study the impact of inherited myeloid mutations and highlights the importance of accounting for the influence of germline mutations in HSPCs and their microenvironment.


Asunto(s)
Médula Ósea , Eritropoyesis , Humanos , Eritropoyesis/genética , Mutación de Línea Germinal , Reparación del ADN/genética , Células Germinativas , ADN Helicasas/genética
5.
Trends Mol Med ; 28(10): 882-891, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36057525

RESUMEN

Telomere biology disorders (TBDs) are a group of rare diseases caused by mutations that impair telomere maintenance. Mutations that cause reduced levels of TERC/hTR, the telomerase RNA component, are found in most TBD patients and include loss-of-function mutations in hTR itself, in hTR-binding proteins [NOP10, NHP2, NAF1, ZCCHC8, and dyskerin (DKC1)], and in proteins required for hTR processing (PARN). These patients show diverse clinical presentations that most commonly include bone marrow failure (BMF)/aplastic anemia (AA), pulmonary fibrosis, and liver cirrhosis. There are no curative therapies for TBD patients. An understanding of hTR biogenesis, maturation, and degradation has identified pathways and pharmacological agents targeting the poly(A) polymerase PAPD5, which adds 3'-oligoadenosine tails to hTR to promote hTR degradation, and TGS1, which modifies the 5'-cap structure of hTR to enhance degradation, as possible therapeutic approaches. Critical next steps will be clinical trials to establish the effectiveness and potential side effects of these compounds in TBD patients.


Asunto(s)
Disqueratosis Congénita , Telomerasa , Biología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Disqueratosis Congénita/genética , Disqueratosis Congénita/metabolismo , Humanos , Mutación , Proteínas Nucleares/genética , ARN/metabolismo , Proteínas de Unión al ARN/genética , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética
6.
Expert Rev Hematol ; 15(8): 685-696, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35929966

RESUMEN

BACKGROUND: Dyskeratosis congenita (DC) is a multisystem syndrome characterized by mucocutaneous abnormalities, bone marrow failure, and predisposition to cancer. Studies over the last 25 years have led to the identification of 18 disease genes. These have a principal role in telomere maintenance, and patients usually have very short/abnormal telomeres. The advances have also led to the unification of DC with a number of other diseases, now collectively referred to as the telomeropathies or telomere biology disorders. WHAT IS COVERED: Clinical features, genetics, and biology of the different subtypes. Expert view on diagnosis, treatment of the hematological complications and future. EXPERT VIEW: As these are very pleotropic disorders affecting multiple organs, a high index of suspicion is necessary to make the diagnosis. Telomere length measurement and genetic analysis of the disease genes have become useful diagnostic tools. Although hematological defects can respond to danazol/oxymetholone, the only current curative treatment for these is hematopoietic stem cell transplantation (HSCT) using fludarabine-based conditioning protocols. New therapies are needed where danazol/oxymetholone is ineffective and HSCT is not feasible.


Asunto(s)
Disqueratosis Congénita , Telomerasa , Biología , Danazol , Disqueratosis Congénita/diagnóstico , Disqueratosis Congénita/genética , Disqueratosis Congénita/terapia , Humanos , Mutación , Oximetolona , Telómero/genética , Telómero/metabolismo
7.
Am J Hum Genet ; 109(8): 1472-1483, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931051

RESUMEN

Dyskeratosis congenita (DC) is an inherited bone-marrow-failure disorder characterized by a triad of mucocutaneous features that include abnormal skin pigmentation, nail dystrophy, and oral leucoplakia. Despite the identification of several genetic variants that cause DC, a significant proportion of probands remain without a molecular diagnosis. In a cohort of eight independent DC-affected families, we have identified a remarkable series of heterozygous germline variants in the gene encoding thymidylate synthase (TYMS). Although the inheritance appeared to be autosomal recessive, one parent in each family had a wild-type TYMS coding sequence. Targeted genomic sequencing identified a specific haplotype and rare variants in the naturally occurring TYMS antisense regulator ENOSF1 (enolase super family 1) inherited from the other parent. Lymphoblastoid cells from affected probands have severe TYMS deficiency, altered cellular deoxyribonucleotide triphosphate pools, and hypersensitivity to the TYMS-specific inhibitor 5-fluorouracil. These defects in the nucleotide metabolism pathway resulted in genotoxic stress, defective transcription, and abnormal telomere maintenance. Gene-rescue studies in cells from affected probands revealed that post-transcriptional epistatic silencing of TYMS is occurring via elevated ENOSF1. These cell and molecular abnormalities generated by the combination of germline digenic variants at the TYMS-ENOSF1 locus represent a unique pathogenetic pathway for DC causation in these affected individuals, whereas the parents who are carriers of either of these variants in a singular fashion remain unaffected.


Asunto(s)
Disqueratosis Congénita , Timidilato Sintasa , Disqueratosis Congénita/genética , Células Germinativas , Heterocigoto , Humanos , Nucleótidos , Timidilato Sintasa/deficiencia , Timidilato Sintasa/genética
8.
Blood ; 140(6): 556-570, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35605178

RESUMEN

Inherited bone marrow (BM) failure syndromes are a diverse group of disorders characterized by BM failure, usually in association with ≥1 extrahematopoietic abnormalities. BM failure, which can involve ≥1 cell lineages, often presents in the pediatric age group. Furthermore, some children initially labeled as having idiopathic aplastic anemia or myelodysplasia represent cryptic cases of inherited BM failure. Significant advances in the genetics of these syndromes have been made, identifying more than 100 disease genes, giving insights into normal hematopoiesis and how it is disrupted in patients with BM failure. They have also provided important information on fundamental biological pathways, including DNA repair: Fanconi anemia (FA) genes; telomere maintenance: dyskeratosis congenita (DC) genes; and ribosome biogenesis: Shwachman-Diamond syndrome and Diamond-Blackfan anemia genes. In addition, because these disorders are usually associated with extrahematopoietic abnormalities and increased risk of cancer, they have provided insights into human development and cancer. In the clinic, genetic tests stemming from the recent advances facilitate diagnosis, especially when clinical features are insufficient to accurately classify a disorder. Hematopoietic stem cell transplantation using fludarabine-based protocols has significantly improved outcomes, particularly in patients with FA or DC. Management of some other complications, such as cancer, remains a challenge. Recent studies have suggested the possibility of new and potentially more efficacious therapies, including a renewed focus on hematopoietic gene therapy and drugs [transforming growth factor-ß inhibitors for FA and PAPD5, a human poly(A) polymerase, inhibitors for DC] that target disease-specific defects.


Asunto(s)
Anemia Aplásica , Enfermedades de la Médula Ósea , Disqueratosis Congénita , Neoplasias , Pancitopenia , Anemia Aplásica/complicaciones , Anemia Aplásica/genética , Anemia Aplásica/terapia , Enfermedades de la Médula Ósea/complicaciones , Enfermedades de la Médula Ósea/genética , Enfermedades de la Médula Ósea/terapia , Trastornos de Fallo de la Médula Ósea , Niño , Disqueratosis Congénita/genética , Disqueratosis Congénita/terapia , Humanos , Neoplasias/complicaciones , Pancitopenia/complicaciones
10.
Blood Adv ; 5(23): 5360-5371, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34625797

RESUMEN

Gene expression profiling has long been used in understanding the contribution of genes and related pathways in disease pathogenesis and susceptibility. We have performed whole-blood transcriptomic profiling in a subset of patients with inherited bone marrow failure (IBMF) whose diseases are clinically and genetically characterized as Fanconi anemia (FA), Shwachman-Diamond syndrome (SDS), and dyskeratosis congenita (DC). We hypothesized that annotating whole-blood transcripts genome wide will aid in understanding the complexity of gene regulation across these IBMF subtypes. Initial analysis of these blood-derived transcriptomes revealed significant skewing toward upregulated genes in patients with FA when compared with controls. Patients with SDS or DC also showed similar skewing profiles in their transcriptional status revealing a common pattern across these different IBMF subtypes. Gene set enrichment analysis revealed shared pathways involved in protein translation and elongation (ribosome constituents), RNA metabolism (nonsense-mediated decay), and mitochondrial function (electron transport chain). We further identified a discovery set of 26 upregulated genes at stringent cutoff (false discovery rate < 0.05) that appeared as a unified signature across the IBMF subtypes. Subsequent transcriptomic analysis on genetically uncharacterized patients with BMF revealed a striking overlap of genes, including 22 from the discovery set, which indicates a unified transcriptional drive across the classic (FA, SDS, and DC) and uncharacterized BMF subtypes. This study has relevance in disease pathogenesis, for example, in explaining the features (including the BMF) common to all patients with IBMF and suggests harnessing this transcriptional signature for patient benefit.


Asunto(s)
Enfermedades de la Médula Ósea , Disqueratosis Congénita , Anemia de Fanconi , Enfermedades de la Médula Ósea/genética , Trastornos de Fallo de la Médula Ósea , Anemia de Fanconi/genética , Perfilación de la Expresión Génica , Humanos
11.
Hum Genet ; 140(6): 945-955, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33709208

RESUMEN

Telomere biology disorders are complex clinical conditions that arise due to mutations in genes required for telomere maintenance. Telomere length has been utilised as part of the diagnostic work-up of patients with these diseases; here, we have tested the utility of high-throughput STELA (HT-STELA) for this purpose. HT-STELA was applied to a cohort of unaffected individuals (n = 171) and a retrospective cohort of mutation carriers (n = 172). HT-STELA displayed a low measurement error with inter- and intra-assay coefficient of variance of 2.3% and 1.8%, respectively. Whilst telomere length in unaffected individuals declined as a function of age, telomere length in mutation carriers appeared to increase due to a preponderance of shorter telomeres detected in younger individuals (< 20 years of age). These individuals were more severely affected, and age-adjusted telomere length differentials could be used to stratify the cohort for overall survival (Hazard Ratio = 5.6 (1.5-20.5); p < 0.0001). Telomere lengths of asymptomatic mutation carriers were shorter than controls (p < 0.0001), but longer than symptomatic mutation carriers (p < 0.0001) and telomere length heterogeneity was dependent on the diagnosis and mutational status. Our data show that the ability of HT-STELA to detect short telomere lengths, that are not readily detected with other methods, means it can provide powerful diagnostic discrimination and prognostic information. The rapid format, with a low measurement error, demonstrates that HT-STELA is a new high-quality laboratory test for the clinical diagnosis of an underlying telomeropathy.


Asunto(s)
Trastornos de Fallo de la Médula Ósea/diagnóstico , Disqueratosis Congénita/diagnóstico , Retardo del Crecimiento Fetal/diagnóstico , Tamización de Portadores Genéticos/métodos , Discapacidad Intelectual/diagnóstico , Microcefalia/diagnóstico , Telómero/patología , Adolescente , Adulto , Factores de Edad , Anciano , Enfermedades Asintomáticas , Trastornos de Fallo de la Médula Ósea/genética , Trastornos de Fallo de la Médula Ósea/patología , Estudios de Casos y Controles , Niño , Preescolar , Disqueratosis Congénita/genética , Disqueratosis Congénita/patología , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/patología , Heterocigoto , Humanos , Lactante , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Masculino , Microcefalia/genética , Microcefalia/patología , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Análisis de Supervivencia , Telómero/metabolismo , Homeostasis del Telómero
12.
Proc Natl Acad Sci U S A ; 117(29): 17151-17155, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32636268

RESUMEN

Inherited bone marrow failure (BMF) syndromes are a heterogeneous group of diseases characterized by defective hematopoiesis and often predisposing to myelodysplastic syndrome (MDS) and acute myelogenous leukemia. We have studied a large family consisting of several affected individuals with hematologic abnormalities, including one family member who died of acute leukemia. By whole-exome sequencing, we identified a novel frameshift variant in the ubiquitously expressed transcription factor specificity protein 1 (SP1). This heterozygous variant (c.1995delA) truncates the canonical Sp1 molecule in the highly conserved C-terminal DNA-binding zinc finger domains. Transcriptomic analysis and gene promoter characterization in patients' blood revealed a hypermorphic effect of this Sp1 variant, triggering superactivation of Sp1-mediated transcription and driving significant up-regulation of Sp1 target genes. This familial genetic study indicates a central role for Sp1 in causing autosomal dominant transmission of BMF, thereby confirming its critical role in hematopoiesis in humans.


Asunto(s)
Trastornos de Fallo de la Médula Ósea/genética , Mutación del Sistema de Lectura/genética , Factor de Transcripción Sp1/genética , Transcripción Genética/genética , Femenino , Humanos , Masculino , Linaje , Transcriptoma/genética , Regulación hacia Arriba/genética , Dedos de Zinc/genética
13.
Nat Genet ; 51(10): 1518-1529, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31570891

RESUMEN

RNA modifications are emerging as key determinants of gene expression. However, compelling genetic demonstrations of their relevance to human disease are lacking. Here, we link ribosomal RNA 2'-O-methylation (2'-O-Me) to the etiology of dyskeratosis congenita. We identify nucleophosmin (NPM1) as an essential regulator of 2'-O-Me on rRNA by directly binding C/D box small nucleolar RNAs, thereby modulating translation. We demonstrate the importance of 2'-O-Me-regulated translation for cellular growth, differentiation and hematopoietic stem cell maintenance, and show that Npm1 inactivation in adult hematopoietic stem cells results in bone marrow failure. We identify NPM1 germline mutations in patients with dyskeratosis congenita presenting with bone marrow failure and demonstrate that they are deficient in small nucleolar RNA binding. Mice harboring a dyskeratosis congenita germline Npm1 mutation recapitulate both hematological and nonhematological features of dyskeratosis congenita. Thus, our findings indicate that impaired 2'-O-Me can be etiological to human disease.


Asunto(s)
Disqueratosis Congénita/genética , Epigenómica/métodos , Mutación de Línea Germinal , Proteínas Nucleares/genética , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Ribosómico/genética , Animales , Disqueratosis Congénita/patología , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/química , Nucleofosmina , ARN Nucleolar Pequeño , Transcriptoma
15.
Proc Natl Acad Sci U S A ; 115(30): 7777-7782, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29987015

RESUMEN

Biallelic variants in the ERCC excision repair 6 like 2 gene (ERCC6L2) are known to cause bone marrow failure (BMF) due to defects in DNA repair and mitochondrial function. Here, we report on eight cases of BMF from five families harboring biallelic variants in ERCC6L2, two of whom present with myelodysplasia. We confirm that ERCC6L2 patients' lymphoblastoid cell lines (LCLs) are hypersensitive to DNA-damaging agents that specifically activate the transcription coupled nucleotide excision repair (TCNER) pathway. Interestingly, patients' LCLs are also hypersensitive to transcription inhibitors that interfere with RNA polymerase II (RNA Pol II) and display an abnormal delay in transcription recovery. Using affinity-based mass spectrometry we found that ERCC6L2 interacts with DNA-dependent protein kinase (DNA-PK), a regulatory component of the RNA Pol II transcription complex. Chromatin immunoprecipitation PCR studies revealed ERCC6L2 occupancy on gene bodies along with RNA Pol II and DNA-PK. Patients' LCLs fail to terminate transcript elongation accurately upon DNA damage and display a significant increase in nuclear DNA-RNA hybrids (R loops). Collectively, we conclude that ERCC6L2 is involved in regulating RNA Pol II-mediated transcription via its interaction with DNA-PK to resolve R loops and minimize transcription-associated genome instability. The inherited BMF syndrome caused by biallelic variants in ERCC6L2 can be considered as a primary transcription deficiency rather than a DNA repair defect.


Asunto(s)
Alelos , Enfermedades de la Médula Ósea/metabolismo , ADN Helicasas/metabolismo , Reparación del ADN , Enfermedades Genéticas Congénitas/metabolismo , Inestabilidad Genómica , Transcripción Genética , Células A549 , Enfermedades de la Médula Ósea/genética , Enfermedades de la Médula Ósea/patología , ADN Helicasas/genética , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Femenino , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/patología , Células HeLa , Humanos , Masculino , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Síndrome
20.
Haematologica ; 101(10): 1180-1189, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27612988

RESUMEN

Dyskeratosis congenita is a highly pleotropic genetic disorder. This heterogeneity can lead to difficulties in making an accurate diagnosis and delays in appropriate management. The aim of this study was to determine the underlying genetic basis in patients presenting with features of dyskeratosis congenita and who were negative for mutations in the classical dyskeratosis congenita genes. By whole exome and targeted sequencing, we identified biallelic variants in genes that are not associated with dyskeratosis congenita in 17 individuals from 12 families. Specifically, these were homozygous variants in USB1 (8 families), homozygous missense variants in GRHL2 (2 families) and identical compound heterozygous variants in LIG4 (2 families). All patients had multiple somatic features of dyskeratosis congenita but not the characteristic short telomeres. Our case series shows that biallelic variants in USB1, LIG4 and GRHL2, the genes mutated in poikiloderma with neutropenia, LIG4/Dubowitz syndrome and the recently recognized ectodermal dysplasia/short stature syndrome, respectively, cause features that overlap with dyskeratosis congenita. Strikingly, these genes also overlap in their biological function with the known dyskeratosis congenita genes that are implicated in telomere maintenance and DNA repair pathways. Collectively, these observations demonstrate the marked overlap of dyskeratosis congenita with four other genetic syndromes, confounding accurate diagnosis and subsequent management. This has important implications for establishing a genetic diagnosis when a new patient presents in the clinic. Patients with clinical features of dyskeratosis congenita need to have genetic analysis of USB1, LIG4 and GRHL2 in addition to the classical dyskeratosis congenita genes and telomere length measurements.


Asunto(s)
Disqueratosis Congénita/diagnóstico , Disqueratosis Congénita/genética , Exoma/genética , Variación Genética/genética , ADN Ligasa (ATP)/genética , Proteínas de Unión al ADN/genética , Humanos , Linaje , Hidrolasas Diéster Fosfóricas/genética , Análisis de Secuencia de ADN , Síndrome , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA