Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genomics ; 116(5): 110895, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39025317

RESUMEN

NF-Y is a Transcription Factor that regulates transcription through binding to the CCAAT-box. To understand its strategy, we analyzed 16 ChIP-seq datasets from human and mouse cells. Shared loci, mostly located in promoters of expressed genes of cell cycle, metabolism and gene expression pathways, are associated with histone marks of active chromatin and specific modules of TFs. Other peaks are in enhancers and Transposable Elements -TE- of retroviral origin in human and mouse. We evaluated the relationship with USF1, a common synergistic partner in promoters and MLT1 TEs, upon NF-YB inactivation: USF1 binding decreases in promoters, modestly in MLT1, suggesting a pioneering role of NF-Y in formers, not in the latters. These data define a common set of NF-Y functional targets across different mammalian cell types, suggesting a pioneering role in promoters with respect to TEs.

2.
Aquat Toxicol ; 273: 107032, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39068809

RESUMEN

Million tons of tires become waste every year, and the so-called End-of-Life Tires (ELTs) are ground into powder (ELT-dp; size < 0.8 mm) and granules (ELT-dg; 0.8 < size < 2.5 mm) for recycling. The aim of this study was to evaluate the sub-lethal effects of three different concentrations (0.1, 1, and 10 mg/L) of aqueous suspensions from ELT-dp and ELT-dg on Danio rerio (zebrafish) larvae exposed from 0 to 120 h post-fertilization (hpf). Chronic effects were assessed through biomarkers, real-time PCR, and proteomics. We observed a significant increase in swimming behavior and heart rate only in specimens exposed to ELT-dp suspensions at 1 and 10 mg/L, respectively. Conversely, the activities of detoxifying enzymes ethoxyresorufin-O-deethylase (EROD) and glutathione-S-transferase (GST) showed significant modulation only in specimens exposed to ELT-dg groups. Although no effects were observed through real-time PCR, proteomics highlighted alterations induced by the three ELT-dp concentrations in over 100 proteins involved in metabolic pathways of aromatic and nitrogen compounds. The results obtained suggest that the toxic mechanism of action (MoA) of ELT suspensions is mainly associated with the induction of effects by released chemicals in water, with a higher toxicity of ELT-dp compared to ELT-dg.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/fisiología , Contaminantes Químicos del Agua/toxicidad , Suspensiones , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Microplásticos/toxicidad , Larva/efectos de los fármacos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Ecotoxicología , Natación , Biomarcadores/metabolismo , Proteómica
3.
Biochim Biophys Acta Rev Cancer ; 1879(2): 189082, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309445

RESUMEN

NF-Y is a Transcription Factor (TF) targeting the CCAAT box regulatory element. It consists of the NF-YB/NF-YC heterodimer, each containing an Histone Fold Domain (HFD), and the sequence-specific subunit NF-YA. NF-YA expression is associated with cell proliferation and absent in some post-mitotic cells. The review summarizes recent findings impacting on cancer development. The logic of the NF-Y regulome points to pro-growth, oncogenic genes in the cell-cycle, metabolism and transcriptional regulation routes. NF-YA is involved in growth/differentiation decisions upon cell-cycle re-entry after mitosis and it is widely overexpressed in tumors, the HFD subunits in some tumor types or subtypes. Overexpression of NF-Y -mostly NF-YA- is oncogenic and decreases sensitivity to anti-neoplastic drugs. The specific roles of NF-YA and NF-YC isoforms generated by alternative splicing -AS- are discussed, including the prognostic value of their levels, although the specific molecular mechanisms of activity are still to be deciphered.


Asunto(s)
Factor de Unión a CCAAT , Neoplasias , Humanos , Factor de Unión a CCAAT/genética , Factor de Unión a CCAAT/metabolismo , Factores de Transcripción/genética , Neoplasias/genética , Isoformas de Proteínas/genética , Regulación de la Expresión Génica
4.
Cardiovasc Res ; 119(18): 2917-2929, 2024 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-37922889

RESUMEN

AIMS: Mitochondria are plastic organelles that continuously undergo biogenesis, fusion, fission, and mitophagy to control cellular energy metabolism, calcium homeostasis, hormones, sterols, and bile acids (BAs) synthesis. Here, we evaluated how the impairment of mitochondrial fusion in hepatocytes affects diet-induced liver steatosis and obesity. METHODS AND RESULTS: Male mice selectively lacking the key protein involved in inner mitochondrial fusion, optic atrophy 1 (OPA1) (OPA1ΔHep) were fed a high fat diet (HFD) for 20 weeks. OPA1ΔHep mice were protected from the development of hepatic steatosis and obesity because of reduced lipid absorption; a profile which was accompanied by increased respiratory exchange ratio in vivo, suggesting a preference for carbohydrates in OPA1ΔHep compared to controls. At the molecular level, this phenotype emerged as a consequence of poor mitochondria-peroxisome- endoplasmic reticulum (ER) tethering in OPA1 deficient hepatocytes, which impaired BAs conjugation and release in the bile, thus impacting lipid absorption from the diet. Concordantly, the liver of subjects with non-alcoholic fatty liver disease (NAFLD) presented an increased expression of OPA1 and of the network of proteins involved in mitochondrial function when compared with controls. CONCLUSION: Patients with NAFLD present increased expression of proteins involved in mitochondrial fusion in the liver. The selective deficency of OPA1 in hepatocytes protects mice from HFD-induced metabolic dysfunction by reducing BAs secretion and dietary lipids absorption as a consequence of reduced liver mitochondria-peroxisome-ER tethering.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Masculino , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Dinámicas Mitocondriales , Hígado/metabolismo , Hepatocitos/metabolismo , Obesidad/metabolismo , Dieta Alta en Grasa , Lípidos , Metaboloma , Ácidos y Sales Biliares/metabolismo , Ratones Endogámicos C57BL
5.
Cancer Lett ; 567: 216262, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37307894

RESUMEN

Aberrant splicing events are associated with colorectal cancer (CRC) and provide new opportunities for tumor diagnosis and treatment. The expression of the splice variants of NF-YA, the DNA binding subunit of the transcription factor NF-Y, is deregulated in multiple cancer types compared to healthy tissues. NF-YAs and NF-YAl isoforms differ in the transactivation domain, which may result in distinct transcriptional programs. In this study, we demonstrated that the NF-YAl transcript is higher in aggressive mesenchymal CRCs and predicts shorter patients' survival. In 2D and 3D conditions, CRC cells overexpressing NF-YAl (NF-YAlhigh) exhibit reduced cell proliferation, rapid single cell amoeboid-like migration, and form irregular spheroids with poor cell-to-cell adhesion. Compared to NF-YAshigh, NF-YAlhigh cells show changes in the transcription of genes involved in epithelial-mesenchymal transition, extracellular matrix and cell adhesion. NF-YAl and NF-YAs bind similarly to the promoter of the E-cadherin gene, but oppositely regulate its transcription. The increased metastatic potential of NF-YAlhigh cells in vivo was confirmed in zebrafish xenografts. These results suggest that the NF-YAl splice variant could be a new CRC prognostic factor and that splice-switching strategies may reduce metastatic CRC progression.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Animales , Humanos , Pez Cebra/genética , Factores de Transcripción , Neoplasias del Colon/genética , Transición Epitelial-Mesenquimal/genética , Matriz Extracelular , Sorbitol , Movimiento Celular/genética , Neoplasias Colorrectales/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
6.
Cell Death Dis ; 14(1): 65, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36707502

RESUMEN

NF-Y is a trimeric transcription factor whose binding site -the CCAAT box- is enriched in cancer-promoting genes. The regulatory subunit, the sequence-specificity conferring NF-YA, comes in two major isoforms, NF-YA long (NF-YAl) and short (NF-YAs). Extensive expression analysis in epithelial cancers determined two features: widespread overexpression and changes in NF-YAl/NF-YAs ratios (NF-YAr) in tumours with EMT features. We performed wet and in silico experiments to explore the role of the isoforms in breast -BRCA- and gastric -STAD- cancers. We generated clones of two Claudinlow BRCA lines SUM159PT and BT549 ablated of exon-3, thus shifting expression from NF-YAl to NF-YAs. Edited clones show normal growth but reduced migratory capacities in vitro and ability to metastatize in vivo. Using TCGA, including upon deconvolution of scRNA-seq data, we formalize the clinical importance of high NF-YAr, associated to EMT genes and cell populations. We derive a novel, prognostic 158 genes signature common to BRCA and STAD Claudinlow tumours. Finally, we identify splicing factors associated to high NF-YAr, validating RBFOX2 as promoting expression of NF-YAl. These data bring three relevant results: (i) the definition and clinical implications of NF-YAr and the 158 genes signature in Claudinlow tumours; (ii) genetic evidence of 28 amino acids in NF-YAl with EMT-promoting capacity; (iii) the definition of selected splicing factors associated to NF-YA isoforms.


Asunto(s)
Factor de Unión a CCAAT , Neoplasias , Humanos , Factor de Unión a CCAAT/genética , Neoplasias/genética , Regiones Promotoras Genéticas , Isoformas de Proteínas/metabolismo , Proteínas Represoras/metabolismo , Factores de Empalme de ARN/metabolismo , Sorbitol , Factores de Transcripción/metabolismo , Transición Epitelial-Mesenquimal
7.
Front Cell Dev Biol ; 10: 909097, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784469

RESUMEN

Aside serving as host gene for miR-205, MIR205HG transcribes for a chromatin-associated long noncoding RNA (lncRNA) able to restrain the differentiation of prostate basal cells, thus being reannotated as LEADR (Long Epithelial Alu-interacting Differentiation-related RNA). We previously showed the presence of Alu sequences in the promoters of genes modulated upon MIR205HG/LEADR manipulation. Notably, an Alu element also spans the first and second exons of MIR205HG/LEADR, suggesting its possible involvement in target selection/binding. Here, we performed ChIRP-seq to map MIR205HG/LEADR chromatin occupancy at genome-wide level in prostate basal cells. Our results confirmed preferential binding to regions proximal to gene transcription start site (TSS). Moreover, enrichment of triplex-forming sequences was found upstream of MIR205HG/LEADR-bound genes, peaking at -1,500/-500 bp from TSS. Triplexes formed with one or two putative DNA binding sites within MIR205HG/LEADR sequence, located just upstream of the Alu element. Notably, triplex-forming regions of bound genes were themselves enriched in Alu elements. These data suggest, from one side, that triplex formation may be the prevalent mechanism by which MIR205HG/LEADR selects and physically interacts with target DNA, from the other that direct or protein-mediated Alu (RNA)/Alu (DNA) interaction may represent a further functional requirement. We also found that triplex-forming regions were enriched in specific histone modifications, including H3K4me1 in the absence of H3K27ac, H3K4me3 and H3K27me3, indicating that in prostate basal cells MIR205HG/LEADR may preferentially bind to primed proximal regulatory elements. This may underscore the need for basal cells to keep MIR205HG/LEADR target genes repressed but, at the same time, responsive to differentiation cues.

8.
Genomics ; 114(4): 110390, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35589059

RESUMEN

NF-Y is a trimeric pioneer Transcription Factor (TF) whose target sequence -the CCAAT box- is present in ~25% of mammalian promoters. We reconstruct the phylogenetic history of the regulatory NF-YA subunit in vertebrates. We find that in addition to the remarkable conservation of the subunits-interaction and DNA-binding parts, the Transcriptional Activation Domain (TAD) is also conserved (>90% identity among bony vertebrates). We infer the phylogeny of the alternatively spliced exon-3 and partial splicing events of exon-7 -7N and 7C- revealing independent clade-specific losses of these regions. These isoforms shape the TAD. Absence of exon-3 in basal deuterostomes, cartilaginous fishes and hagfish, but not in lampreys, suggests that the "short" isoform is primordial, with emergence of exon-3 in chordates. Exon 7N was present in the vertebrate common ancestor, while 7C is a molecular innovation of teleost fishes. RNA-seq analysis in several species confirms expression of all these isoforms. We identify 3 blocks of amino acids in the TAD shared across deuterostomes, yet structural predictions and sequence analyses suggest an evolutionary drive for maintenance of an Intrinsically Disordered Region -IDR- within the TAD. Overall, these data help reconstruct the logic for alternative splicing of this essential eukaryotic TF.


Asunto(s)
Factores de Transcripción , Vertebrados , Empalme Alternativo , Animales , Evolución Molecular , Peces/metabolismo , Mamíferos , Filogenia , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Transcripción/genética , Vertebrados/genética
9.
Sci Rep ; 11(1): 23764, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34887475

RESUMEN

NF-Y is a pioneer transcription factor-TF-formed by the Histone-like NF-YB/NF-YC subunits and the regulatory NF-YA. It binds to the CCAAT box, an element enriched in promoters of genes overexpressed in many types of cancer. NF-YA is present in two major isoforms-NF-YAs and NF-YAl-due to alternative splicing, overexpressed in epithelial tumors. Here we analyzed NF-Y expression in stomach adenocarcinomas (STAD). We completed the partitioning of all TCGA tumor samples (450) according to molecular subtypes proposed by TCGA and ACRG, using the deep learning tool DeepCC. We analyzed differentially expressed genes-DEG-for enriched pathways and TFs binding sites in promoters. CCAAT is the predominant element only in the core group of genes upregulated in all subtypes, with cell-cycle gene signatures. NF-Y subunits are overexpressed, particularly NF-YA. NF-YAs is predominant in CIN, MSI and EBV TCGA subtypes, NF-YAl is higher in GS and in the ACRG EMT subtypes. Moreover, NF-YAlhigh tumors correlate with a discrete Claudinlow cohort. Elevated NF-YB levels are protective in MSS;TP53+ patients, whereas high NF-YAl/NF-YAs ratios correlate with worse prognosis. We conclude that NF-Y isoforms are associated to clinically relevant features of gastric cancer.


Asunto(s)
Factor de Unión a CCAAT/genética , Regulación Neoplásica de la Expresión Génica , Subunidades de Proteína/genética , Neoplasias Gástricas/genética , Factor de Unión a CCAAT/química , Factor de Unión a CCAAT/metabolismo , Línea Celular Tumoral , Biología Computacional/métodos , Perfilación de la Expresión Génica , Humanos , Pronóstico , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Isoformas de Proteínas/genética , Subunidades de Proteína/metabolismo , Transducción de Señal , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Transcriptoma
10.
J Exp Clin Cancer Res ; 40(1): 362, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34782004

RESUMEN

BACKGROUND: Approaches based on expression signatures of prostate cancer (PCa) have been proposed to predict patient outcomes and response to treatments. The transcription factor NF-Y participates to the progression from benign epithelium to both localized and metastatic PCa and is associated with aggressive transcriptional profile. The gene encoding for NF-YA, the DNA-binding subunit of NF-Y, produces two alternatively spliced transcripts, NF-YAs and NF-YAl. Bioinformatic analyses pointed at NF-YA splicing as a key transcriptional signature to discriminate between different tumor molecular subtypes. In this study, we aimed to determine the pathophysiological role of NF-YA splice variants in PCa and their association with aggressive subtypes. METHODS: Data on the expression of NF-YA isoforms were extracted from the TCGA (The Cancer Genome Atlas) database of tumor prostate tissues and validated in prostate cell lines. Lentiviral transduction and CRISPR-Cas9 technology allowed the modulation of the expression of NF-YA splice variants in PCa cells. We characterized 3D cell cultures through in vitro assays and RNA-seq profilings. We used the rank-rank hypergeometric overlap approach to identify concordant/discordant gene expression signatures of NF-YAs/NF-YAl-overexpressing cells and human PCa patients. We performed in vivo studies in SHO-SCID mice to determine pathological and molecular phenotypes of NF-YAs/NF-YAl xenograft tumors. RESULTS: NF-YA depletion affects the tumorigenic potential of PCa cells in vitro and in vivo. Elevated NF-YAs levels are associated to aggressive PCa specimens, defined by Gleason Score and TNM classification. NF-YAl overexpression increases cell motility, while NF-YAs enhances cell proliferation in PCa 3D spheroids and xenograft tumors. The transcriptome of NF-YAs-spheroids has an extensive overlap with localized and metastatic human PCa signatures. According to PCa PAM50 classification, NF-YAs transcript levels are higher in LumB, characterized by poor prognosis compared to LumA and basal subtypes. A significant decrease in NF-YAs/NF-YAl ratio distinguishes PCa circulating tumor cells from cancer cells in metastatic sites, consistently with pro-migratory function of NF-YAl. Stratification of patients based on NF-YAs expression is predictive of clinical outcome. CONCLUSIONS: Altogether, our results indicate that the modulation of NF-YA isoforms affects prostate pathophysiological processes and contributes to cancer-relevant phenotype, in vitro and in vivo. Evaluation of NF-YA splicing may represent a new molecular strategy for risk assessment of PCa patients.


Asunto(s)
Empalme Alternativo/genética , Factor de Unión a CCAAT/metabolismo , Edición Génica/métodos , Neoplasias de la Próstata/genética , Animales , Humanos , Masculino , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Nat Commun ; 12(1): 6013, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650038

RESUMEN

The transcription factor NF-Y promotes cell proliferation and its activity often declines during differentiation through the regulation of NF-YA, the DNA binding subunit of the complex. In stem cell compartments, the shorter NF-YA splice variant is abundantly expressed and sustains their expansion. Here, we report that satellite cells, the stem cell population of adult skeletal muscle necessary for its growth and regeneration, express uniquely the longer NF-YA isoform, majorly associated with cell differentiation. Through the generation of a conditional knock out mouse model that selectively deletes the NF-YA gene in satellite cells, we demonstrate that NF-YA expression is fundamental to preserve the pool of muscle stem cells and ensures robust regenerative response to muscle injury. In vivo and ex vivo, satellite cells that survive to NF-YA loss exit the quiescence and are rapidly committed to early differentiation, despite delayed in the progression towards later states. In vitro results demonstrate that NF-YA-depleted muscle stem cells accumulate DNA damage and cannot properly differentiate. These data highlight a new scenario in stem cell biology for NF-Y activity, which is required for efficient myogenic differentiation.


Asunto(s)
Factor de Unión a CCAAT/metabolismo , Músculo Esquelético/metabolismo , Regeneración/fisiología , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Animales , Factor de Unión a CCAAT/genética , Diferenciación Celular/genética , Proliferación Celular , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Isoformas de Proteínas/genética , Regeneración/genética
12.
Cancers (Basel) ; 13(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208636

RESUMEN

NF-Y is the CCAAT-binding trimer formed by the histone fold domain (HFD), NF-YB/NF-YC and NF-YA. The CCAAT box is generally prevalent in promoters of "cancer" genes. We reported the overexpression of NF-YA in BRCA, LUAD and LUSC, and of all subunits in HCC. Altered splicing of NF-YA was found in breast and lung cancer. We analyzed RNA-seq datasets of TCGA and cell lines of head and neck squamous cell carcinomas (HNSCC). We partitioned all TCGA data into four subtypes, deconvoluted single-cell RNA-seq of tumors and derived survival curves. The CCAAT box was enriched in the promoters of overexpressed genes. The "short" NF-YAs was overexpressed in all subtypes and the "long" NF-YAl in Mesenchymal. The HFD subunits are overexpressed, except Basal (NF-YB) and Atypical (NF-YC); NF-YAl is increased in p53 mutated tumors. In HPV-positive tumors, high levels of NF-YAs, p16 and ΔNp63 correlate with better prognosis. Deconvolution of single cell RNA-seq (scRNA-seq) found a correlation of NF-YAl with Cancer Associated Fibroblasts (CAFs) and p-EMT cells, a population endowed with metastatic potential. We conclude that overexpression of HFD subunits and NF-YAs is protective in HPV-positive tumors; expression of NF-YAl is largely confined to mutp53 tumors and malignant p-EMT cells.

13.
Int J Mol Sci ; 21(23)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271832

RESUMEN

NF-Y is a pioneer trimeric transcription factor formed by the Histone Fold Domain (HFD) NF-YB/NF-YC subunits and NF-YA. Three subunits are required for DNA binding. CCAAT-specificity resides in NF-YA and transactivation resides in Q-rich domains of NF-YA and NF-YC. They are involved in alternative splicing (AS). We recently showed that NF-YA is overexpressed in breast and lung carcinomas. We report here on the overexpression of all subunits in the liver hepatocellular carcinoma (HCC) TCGA database, specifically the short NF-YAs and NF-YC2 (37 kDa) isoforms. This is observed at all tumor stages, in viral-infected samples and independently from the inflammatory status. Up-regulation of NF-YAs and NF-YC, but not NF-YB, is associated to tumors with mutant p53. We used a deep-learning-based method (DeepCC) to extend the partitioning of the three molecular clusters to all HCC TCGA tumors. In iCluster3, CCAAT is a primary matrix found in promoters of up-regulated genes, and cell-cycle pathways are enriched. Finally, clinical data indicate that, globally, only NF-YAs, but not HFD subunits, correlate with the worst prognosis; in iCluster1 patients, however, all subunits correlate. The data show a difference with other epithelial cancers, in that global overexpression of the three subunits is reported and clinically relevant in a subset of patients; yet, they further reinstate the regulatory role of the sequence-specific subunit.


Asunto(s)
Factor de Unión a CCAAT/genética , Carcinoma Hepatocelular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Biomarcadores de Tumor , Factor de Unión a CCAAT/química , Factor de Unión a CCAAT/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Perfilación de la Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Estadificación de Neoplasias , Regiones Promotoras Genéticas , Isoformas de Proteínas , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética
14.
PLoS Comput Biol ; 16(12): e1008488, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33370256

RESUMEN

NF-Y is a trimeric Transcription Factor -TF- which binds with high selectivity to the conserved CCAAT element. Individual ChIP-seq analysis as well as ENCODE have progressively identified locations shared by other TFs. Here, we have analyzed data introduced by ENCODE over the last five years in K562, HeLa-S3 and GM12878, including several chromatin features, as well RNA-seq profiling of HeLa cells after NF-Y inactivation. We double the number of sequence-specific TFs and co-factors reported. We catalogue them in 4 classes based on co-association criteria, infer target genes categorizations, identify positional bias of binding sites and gene expression changes. Larger and novel co-associations emerge, specifically concerning subunits of repressive complexes as well as RNA-binding proteins. On the one hand, these data better define NF-Y association with single members of major classes of TFs, on the other, they suggest that it might have a wider role in the control of mRNA production.


Asunto(s)
Factor de Unión a CCAAT/metabolismo , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Conjuntos de Datos como Asunto , Células HeLa , Humanos , Análisis de Secuencia de ARN
15.
Cells ; 9(11)2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138093

RESUMEN

NF-Y is a transcription factor (TF) comprising three subunits (NF-YA, NF-YB, NF-YC) that binds with high specificity to the CCAAT sequence, a widespread regulatory element in gene promoters of prosurvival, cell-cycle-promoting, and metabolic genes. Tumor cells undergo "metabolic rewiring" through overexpression of genes involved in such pathways, many of which are under NF-Y control. In addition, NF-YA appears to be overexpressed in many tumor types. Thus, limiting NF-Y activity may represent a desirable anti-cancer strategy, which is an ongoing field of research. With virtual-screening docking simulations on a library of pharmacologically active compounds, we identified suramin as a potential NF-Y inhibitor. We focused on suramin given its high water-solubility that is an important factor for in vitro testing, since NF-Y is sensitive to DMSO. By electrophoretic mobility shift assays (EMSA), isothermal titration calorimetry (ITC), STD NMR, X-ray crystallography, and molecular dynamics (MD) simulations, we showed that suramin binds to the histone fold domains (HFDs) of NF-Y, preventing DNA-binding. Our analyses, provide atomic-level detail on the interaction between suramin and NF-Y and reveal a region of the protein, nearby the suramin-binding site and poorly conserved in other HFD-containing TFs, that may represent a promising starting point for rational design of more specific and potent inhibitors with potential therapeutic applications.


Asunto(s)
Factor de Unión a CCAAT/antagonistas & inhibidores , Factor de Unión a CCAAT/química , Suramina/química , Suramina/farmacología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/química , Secuencia de Aminoácidos , Fenómenos Biofísicos , ADN/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Multimerización de Proteína , Relación Estructura-Actividad
16.
Front Genet ; 11: 72, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153638

RESUMEN

Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-Seq) has opened new avenues of research in the genome-wide characterization of regulatory DNA-protein interactions at the genetic and epigenetic level. As a consequence, it has become the de facto standard for studies on the regulation of transcription, and literally thousands of data sets for transcription factors and cofactors in different conditions and species are now available to the scientific community. However, while pipelines and best practices have been established for the analysis of a single experiment, there is still no consensus on the best way to perform an integrated analysis of multiple datasets in the same condition, in order to identify the most relevant and widespread regulatory modules composed by different transcription factors and cofactors. We present here a computational pipeline for this task, that integrates peak summit colocalization, a novel statistical framework for the evaluation of its significance, and motif enrichment analysis. We show examples of its application to ENCODE data, that led to the identification of relevant regulatory modules composed of different factors, as well as the organization on DNA of the binding motifs responsible for their recruitment.

17.
Cells ; 9(3)2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32214056

RESUMEN

NF-YA, the regulatory subunit of the trimeric transcription factor (TF) NF-Y, is regulated by alternative splicing (AS) generating two major isoforms, "long" (NF-YAl) and "short" (NF-YAs). Muscle cells express NF-YAl. We ablated exon 3 in mouse C2C12 cells by a four-guide CRISPR/Cas9n strategy, obtaining clones expressing exclusively NF-YAs (C2-YAl-KO). C2-YAl-KO cells grow normally, but are unable to differentiate. Myogenin and-to a lesser extent, MyoD- levels are substantially lower in C2-YAl-KO, before and after differentiation. Expression of the fusogenic Myomaker and Myomixer genes, crucial for the early phases of the process, is not induced. Myomaker and Myomixer promoters are bound by MyoD and Myogenin, and Myogenin overexpression induces their expression in C2-YAl-KO. NF-Y inactivation reduces MyoD and Myogenin, but not directly: the Myogenin promoter is CCAAT-less, and the canonical CCAAT of the MyoD promoter is not bound by NF-Y in vivo. We propose that NF-YAl, but not NF-YAs, maintains muscle commitment by indirectly regulating Myogenin and MyoD expression in C2C12 cells. These experiments are the first genetic evidence that the two NF-YA isoforms have functionally distinct roles.


Asunto(s)
Factor de Unión a CCAAT/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animales , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Diferenciación Celular , Fusión Celular , Línea Celular , Células Clonales , Exones/genética , Regulación de la Expresión Génica , Ratones , Fibras Musculares Esqueléticas/citología , Proteína MioD/metabolismo , Miogenina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Transcripción/metabolismo
18.
Genes (Basel) ; 11(2)2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32075093

RESUMEN

The trimeric transcription factor (TF) NF-Y regulates the CCAAT box, a DNA element enriched in promoters of genes overexpressed in many types of cancer. The regulatory NF-YA is present in two major isoforms, NF-YAl ("long") and NF-YAs ("short"). There is growing indication that NF-YA levels are increased in tumors. Here, we report interrogation of RNA-Seq TCGA (The Cancer Genome Atlas)-all 576 samples-and GEO (Gene Expression Ominibus) datasets of lung adenocarcinoma (LUAD). NF-YAs is overexpressed in the three subtypes, proliferative, inflammatory, and TRU (terminal respiratory unit). CCAAT is enriched in promoters of tumor differently expressed genes (DEG) and in the proliferative/inflammatory intersection, matching with KEGG (Kyoto Encyclopedia of Genes and Genomes) terms cell-cycle and signaling. Increasing levels of NF-YAs are observed from low to high CpG island methylator phenotypes (CIMP). We identified 166 genes overexpressed in LUAD cell lines with low NF-YAs/NF-YAl ratios: applying this centroid to TCGA samples faithfully predicted tumors' isoform ratio. This signature lacks CCAAT in promoters. Finally, progression-free intervals and hazard ratios concurred with the worst prognosis of patients with either a low or high NF-YAs/NF-YAl ratio. In conclusion, global overexpression of NF-YAs is documented in LUAD and is associated with aggressive tumor behavior; however, a similar prognosis is recorded in tumors with high levels of NF-YAl and overexpressed CCAAT-less genes.


Asunto(s)
Adenocarcinoma del Pulmón/clasificación , Factor de Unión a CCAAT/genética , Islas de CpG , Perfilación de la Expresión Génica/métodos , Neoplasias Pulmonares/clasificación , Regulación hacia Arriba , Adenocarcinoma del Pulmón/genética , Línea Celular Tumoral , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Neoplasias Pulmonares/genética , Pronóstico , Regiones Promotoras Genéticas , Análisis de Secuencia de ARN
19.
Biochim Biophys Acta Mol Cell Res ; 1867(2): 118571, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31706909

RESUMEN

The heterotrimeric transcription factor NF-Y binds to CCAAT boxes of genes of glutamine metabolism. We set out to study the role of the regulatory NF-YA subunit in this pathway. We produced U2OS and A549 clones stably overexpressing -OE- the two splicing isoforms of NF-YA. NF-YA OE cells show normal growth and colony formation rates, but they become resistant to cell death upon glutamine deprivation. Increased mRNA and protein expression of the key biosynthetic enzyme GLUL in U2OS entails increased production of endogenous glutamine upon deprivation. The use of GLUL inhibitors dampens the NF-YA-mediated effect. NF-YA OE prevents activation of the pro-apoptotic transcription factor CHOP/DDIT3. Elevated basal levels of SERCA1/2, coding for the molecular target of Thapsigargin, correlate with resistance of NF-YA OE cells to the drug. The work represents a proof-of-principle that elevated levels of NF-YA, as found in some tumor types, helps altering cancer metabolic pathways.


Asunto(s)
Factor de Unión a CCAAT/metabolismo , Glutamina/metabolismo , Factor de Unión a CCAAT/genética , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Regulación de la Expresión Génica/efectos de los fármacos , Glutamato-Amoníaco Ligasa/antagonistas & inhibidores , Glutamato-Amoníaco Ligasa/metabolismo , Glutamina/deficiencia , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Tapsigargina/farmacología , Factor de Transcripción CHOP/metabolismo
20.
Genes (Basel) ; 10(11)2019 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-31744190

RESUMEN

The CCAAT box is recognized by the trimeric transcription factor NF-Y, whose NF-YA subunit is present in two major splicing isoforms, NF-YAl ("long") and NF-YAs ("short"). Little is known about the expression levels of NF-Y subunits in tumors, and nothing in lung cancer. By interrogating RNA-seq TCGA and GEO datasets, we found that, unlike NF-YB/NF-YC, NF-YAs is overexpressed in lung squamous cell carcinomas (LUSC). The ratio of the two isoforms changes from normal to cancer cells, with NF-YAs becoming predominant in the latter. NF-YA increased expression correlates with common proliferation markers. We partitioned all 501 TCGA LUSC tumors in the four molecular cohorts and verified that NF-YAs is similarly overexpressed. We analyzed global and subtype-specific RNA-seq data and found that CCAAT is the most abundant DNA matrix in promoters of genes overexpressed in all subtypes. Enriched Gene Ontology terms are cell-cycle and signaling. Survival curves indicate a worse clinical outcome for patients with increasing global amounts of NF-YA; same with hazard ratios with very high and, surprisingly, very low NF-YAs/NF-YAl ratios. We then analyzed gene expression in this latter cohort and identified a different, pro-migration signature devoid of CCAAT. We conclude that overexpression of the NF-Y regulatory subunit in LUSC has the scope of increasing CCAAT-dependent, proliferative (NF-YAshigh) or CCAAT-less, pro-migration (NF-YAlhigh) genes. The data further reinstate the importance of analysis of single isoforms of TFs involved in tumor development.


Asunto(s)
Factor de Unión a CCAAT/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/patología , Movimiento Celular/genética , Proliferación Celular/genética , Estudios de Cohortes , Conjuntos de Datos como Asunto , Ontología de Genes , Humanos , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Pronóstico , Regiones Promotoras Genéticas/genética , Isoformas de Proteínas/metabolismo , RNA-Seq , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...