Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 121(24): 241805, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30608728

RESUMEN

We report a measurement of electron antineutrino oscillation from the Daya Bay Reactor Neutrino Experiment with nearly 4 million reactor ν[over ¯]_{e} inverse ß decay candidates observed over 1958 days of data collection. The installation of a flash analog-to-digital converter readout system and a special calibration campaign using different source enclosures reduce uncertainties in the absolute energy calibration to less than 0.5% for visible energies larger than 2 MeV. The uncertainty in the cosmogenic ^{9}Li and ^{8}He background is reduced from 45% to 30% in the near detectors. A detailed investigation of the spent nuclear fuel history improves its uncertainty from 100% to 30%. Analysis of the relative ν[over ¯]_{e} rates and energy spectra among detectors yields sin^{2}2θ_{13}=0.0856±0.0029 and Δm_{32}^{2}=(2.471_{-0.070}^{+0.068})×10^{-3} eV^{2} assuming the normal hierarchy, and Δm_{32}^{2}=-(2.575_{-0.070}^{+0.068})×10^{-3} eV^{2} assuming the inverted hierarchy.

2.
Phys Rev Lett ; 118(25): 251801, 2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28696753

RESUMEN

The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GW_{th} reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective ^{239}Pu fission fractions F_{239} from 0.25 to 0.35, Daya Bay measures an average IBD yield σ[over ¯]_{f} of (5.90±0.13)×10^{-43} cm^{2}/fission and a fuel-dependent variation in the IBD yield, dσ_{f}/dF_{239}, of (-1.86±0.18)×10^{-43} cm^{2}/fission. This observation rejects the hypothesis of a constant antineutrino flux as a function of the ^{239}Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1σ. This discrepancy indicates that an overall deficit in the measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes ^{235}U, ^{239}Pu, ^{238}U, and ^{241}Pu. Based on measured IBD yield variations, yields of (6.17±0.17) and (4.27±0.26)×10^{-43} cm^{2}/fission have been determined for the two dominant fission parent isotopes ^{235}U and ^{239}Pu. A 7.8% discrepancy between the observed and predicted ^{235}U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.

3.
Phys Rev Lett ; 117(15): 151802, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27768341

RESUMEN

This Letter reports an improved search for light sterile neutrino mixing in the electron antineutrino disappearance channel with the full configuration of the Daya Bay Reactor Neutrino Experiment. With an additional 404 days of data collected in eight antineutrino detectors, this search benefits from 3.6 times the statistics available to the previous publication, as well as from improvements in energy calibration and background reduction. A relative comparison of the rate and energy spectrum of reactor antineutrinos in the three experimental halls yields no evidence of sterile neutrino mixing in the 2×10^{-4}≲|Δm_{41}^{2}|≲0.3 eV^{2} mass range. The resulting limits on sin^{2}2θ_{14} are improved by approx imately a factor of 2 over previous results and constitute the most stringent constraints to date in the |Δm_{41}^{2}|≲0.2 eV^{2} region.

4.
Phys Rev Lett ; 117(15): 151801, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27768356

RESUMEN

Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Stringent limits on sin^{2}2θ_{µe} are set over 6 orders of magnitude in the sterile mass-squared splitting Δm_{41}^{2}. The sterile-neutrino mixing phase space allowed by the LSND and MiniBooNE experiments is excluded for Δm_{41}^{2}<0.8 eV^{2} at 95% CL_{s}.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...