Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(9): 16040-16051, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859241

RESUMEN

Chiral materials are essential to perceive photonic devices that control the helicity of light. However, the chirality of natural materials is rather weak, and relatively thick films are needed for noticeable effects. To overcome this limitation, artificial photonic materials were suggested to affect the chiral response in a much more substantial manner. Ideally, a single layer of such a material, a metasurface, should already be sufficient. While various structures fabricated with top-down nanofabrication technologies have already been reported, here we propose to utilize scaffolded DNA origami technology, a scalable bottom-up approach for metamolecule production, to fabricate a chiral metasurface. We introduce a chiral plasmonic metamolecule in the shape of a tripod and simulate its optical properties. By fixing the metamolecule to a rectangular planar origami, the tripods can be assembled into a 2D DNA origami crystal that forms a chiral metasurface. We simulate the optical properties but also fabricate selected devices to assess the experimental feasibility of the suggested approach critically.


Asunto(s)
ADN , ADN/química , Resonancia por Plasmón de Superficie/instrumentación , Nanotecnología , Nanoestructuras/química
2.
Sci Total Environ ; 934: 173260, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761933

RESUMEN

The LIFE SURFING Project was carried out at the Bailin Landfill in Sabiñánigo, Spain (2020-2022), applying Surfactant Enhanced Aquifer Remediation (SEAR) and In Situ Chemical Oxidation (S-ISCO) in a 60-meter test cell beneath the old landfill, to remediate a contaminated aquifer with dense non-aqueous phase liquid (DNAPL) from nearby lindane production. The project overcame traditional extraction limitations, successfully preventing groundwater pollution from reaching the river. In spring 2022, two SEAR interventions involved the injection of 9.3 m3 (SEAR-1) and 6 m3 (SEAR-2) of aqueous solutions containing 20 g/L of the non-ionic surfactant E-Mulse 3®, with bromide (around 150 mg/L) serving as a conservative tracer. 7.1 and 6.0 m3 were extracted in SEAR-1 and SEAR-2, respectively, recovered 60-70 % of the injected bromide and 30-40 % of the surfactant, confirming surfactant adsorption by the soil. Approximately 130 kg of DNAPL were removed, with over 90 % mobilized and 10 % solubilized. A surfactant-to-DNAPL recovery mass ratio of 2.6 was obtained, a successful value for a fractured aquifer. In September 2022, the S-ISCO phase entailed injecting 22 m3 of a solution containing persulfate (40 g/L), E-Mulse 3® (4 g/L), and NaOH (8.75 g/L) in pulses over 48 h, oxidizing around 20 kg of DNAPL and ensuring low toxicity levels after that. Preceding the SEAR and S-ISCO trials, 2020 and 2021 were dedicated to detailed groundwater flow characterizations, including hydrological and tracer studies. These preliminary investigations allowed the design of a barrier zone between 317 and 557 m from the test cell and the river, situated 900 m away. This zone, integrating alkali dosing, aeration, vapor extraction, and oxidant injection, effectively prevented the escape of fluids to the river. Neither surfactants nor contaminants were detected in river waters post-treatment. The absence of residual phase in test cell wells and reduction of chlorinated compound levels in groundwater were noticed till one year after S-ISCO.

3.
Angew Chem Int Ed Engl ; : e202318805, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687094

RESUMEN

The adhesion of circulating tumor cells (CTCs) to the endothelial lumen and their extravasation to surrounding tissues are crucial in the seeding of metastases and remain the most complex events of the metastatic cascade to study. Integrins expressed on CTCs are major regulators of the extravasation process. This knowledge is primarily derived from animal models and biomimetic systems based on artificial endothelial layers, but these methods have ethical or technical limitations. We present a versatile microfluidic device to study cancer cell extravasation that mimics the endothelial barrier by using a porous membrane functionalized with DNA origami nanostructures (DONs) that display nanoscale patterns of adhesion peptides to circulating cancer cells. The device simulates physiological flow conditions and allows direct visualization of cell transmigration through microchannel pores using 3D confocal imaging. Using this system, we studied integrin-specific adhesion in the absence of other adhesive events. Specifically, we show that the transmigration ability of the metastatic cancer cell line MDA-MB-231 is influenced by the type, distance, and density of adhesion peptides present on the DONs. Furthermore, studies with mixed ligand systems indicate that integrins binding to RGD (arginine-glycine-aspartic acid) and IDS (isoleucine-aspartic acid-serine) did not synergistically enhance the extravasation process of MDA-MB-231 cells.

4.
Small Methods ; : e2400251, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607949

RESUMEN

The advent of biomedical applications of soft bioinspired materials has entailed an increasing demand for streamlined and expedient characterization methods meant for both research and quality control objectives. Here, a novel measurement system for the characterization of biological hydrogels with volumes as low as 75 µL was developed. The system is based on an indentation platform equipped with micrometer drive actuators that allow the determination of both the fracture points and Young's moduli of relatively stiff polymers, including agarose, as well as the measurements of viscosity for exceptionally soft and viscous hydrogels, such as DNA hydrogels. The sensitivity of the method allows differentiation between DNA hydrogels produced by rolling circle amplification based on different template sequences and synthesis protocols. In addition, the polymerization kinetics of the hydrogels can be determined by time-resolved measurements, and the apparent viscosities of even more complex DNA-based nanocomposites can be measured. The platform presented here thus offers the possibility to characterize a broad variety of soft biomaterials in a targeted, fast, and cost-effective manner, holding promises for applications in fundamental materials science and ensuring reproducibility in the handling of complex materials.

5.
Sci Total Environ ; 926: 171848, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38518821

RESUMEN

This work studies the remediation of groundwater saturated with dense non-aqueous phase liquid (DNAPL) from lindane production wastes by electrochemical oxidation. DNAPL-saturated groundwater contains up to 26 chlorinated organic compounds (COCs), including different isomers of hexachlorocyclohexane (HCH). To do this, polluted groundwater was electrolysed using boron-doped diamond (BDD) and stainless steel (SS) as anode and cathode, respectively, and the influence of the current density on COCs removal was evaluated in the range from 5 to 50 mA cm-2. Results show that current densities higher than 25 mA cm-2 lead to the complete removal and mineralisation of all COCs identified in groundwater. The higher the current density, the higher the COCs removal rate. At lower current densities (5 mA cm-2), chlorobenzenes were completely removed, and degradations above 90 % were reached for COCs with more than five chlorine atoms in their molecules. The use of BDD anodes promotes the electrochemical generation of powerful reactive species, such as persulfate, hypochlorite or hydroxyl radicals, that contribute to the degradation and mineralisation of COCs. The applied current density also influences the generation of these species. Finally, no acute toxicity towards Vibrio fischeri was observed for the treated groundwater after the electrochemical oxidation performed at 5 and 10 mA cm-2. These findings demonstrate that electrochemical oxidation with BDD anodes at moderate current densities is a promising alternative for the remediation of actual groundwater contaminated with DNAPLs.

6.
Nano Lett ; 24(5): 1611-1619, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38267020

RESUMEN

The nanoscale arrangement of ligands can have a major effect on the activation of membrane receptor proteins and thus cellular communication mechanisms. Here we report on the technological development and use of tailored DNA origami-based molecular rulers to fabricate "Multiscale Origami Structures As Interface for Cells" (MOSAIC), to enable the systematic investigation of the effect of the nanoscale spacing of epidermal growth factor (EGF) ligands on the activation of the EGF receptor (EGFR). MOSAIC-based analyses revealed that EGF distances of about 30-40 nm led to the highest response in EGFR activation of adherent MCF7 and Hela cells. Our study emphasizes the significance of DNA-based platforms for the detailed investigation of the molecular mechanisms of cellular signaling cascades.


Asunto(s)
Factor de Crecimiento Epidérmico , Receptores ErbB , Humanos , ADN/química , Factor de Crecimiento Epidérmico/química , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Células HeLa , Ligandos , Transducción de Señal
7.
Chem Commun (Camb) ; 59(81): 12184-12187, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37750315

RESUMEN

Accurate quantification of polymerized DNA in rolling circle amplification (RCA)-based hydrogels is challenging due to the high viscosity of these materials, however, it can be achieved with a photometric nucleotide depletion assay or qPCR. We show that the DNA content strongly depends on the template sequence and correlates with the mechanical properties of the hydrogels.

8.
Nanoscale Adv ; 5(15): 3914-3923, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37496619

RESUMEN

Microfluidic droplets are an important tool for studying and mimicking biological systems, e.g., to examine with high throughput the interaction of biomolecular components and the functionality of natural cells, or to develop basic principles for the engineering of artificial cells. Of particular importance is the approach to generate a biomimetic membrane by supramolecular self-assembly of nanoparticle components dissolved in the aqueous phase of the droplets at the inner water/oil interface, which can serve both to mechanically reinforce the droplets and as an interaction surface for cells and other components. While this interfacial assembly driven by electrostatic interaction of surfactants is quite well developed for water/mineral oil (W/MO) systems, no approaches have yet been described to exploit this principle for water/fluorocarbon oil (W/FO) emulsion droplets. Since W/FO systems exhibit not only better compartmentalization but also gas solubility properties, which is particularly crucial for live cell encapsulation and cultivation, we report here the investigation of charged fluorosurfactants for the self-assembly of DNA-modified silica nanoparticles (SiNP-DNA) at the interface of microfluidic W/FO emulsions. To this end, an efficient multicomponent Ugi reaction was used to synthesize the novel fluorosurfactant M4SURF to study the segregation and accumulation of negatively charged SiNP-DNA at the inner interface of microfluidic droplets. Comparative measurements were performed with the negatively charged fluorosurfactant KRYTOX, which can also induce SiNP-DNA segregation in the presence of cations. The segregation dynamics is characterized and preliminary results of cell encapsulation in the SiNP-DNA functionalized droplets are shown.

9.
ACS Nano ; 17(7): 6719-6730, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36990450

RESUMEN

The immunological response of mast cells is controlled by the multivalent binding of antigens to immunoglobulin E (IgE) antibodies bound to the high-affinity receptor FcεRI on the cell membrane surface. However, the spatial organization of antigen-antibody-receptor complexes at the nanometer scale and the structural constraints involved in the initial events at the cell surface are not yet fully understood. For example, it is unclear what influence the affinity and nanoscale distance between the binding partners involved have on the activation of mast cells to degranulate inflammatory mediators from storage granules. We report the use of DNA origami nanostructures (DON) functionalized with different arrangements of the haptenic 2,4-dinitrophenyl (DNP) ligand to generate multivalent artificial antigens with full control over valency and nanoscale ligand architecture. To investigate the spatial requirements for mast cell activation, the DNP-DON complexes were initially used in surface plasmon resonance (SPR) analysis to study the binding kinetics of isolated IgE under physiological conditions. The most stable binding was observed in a narrow window of approximately 16 nm spacing between haptens. In contrast, affinity studies with FcεRI-linked IgE antibodies on the surface of rat basophilic leukemia cells (RBL-2H3) indicated virtually no distance-dependent variations in the binding of the differently structured DNP-DON complexes but suggested a supramolecular oligovalent nature of the interaction. Finally, the use of DNP-DON complexes for mast cell activation revealed that antigen-directed tight assembly of antibody-receptor complexes is the critical factor for triggering degranulation, even more critical than ligand valence. Our study emphasizes the significance of DNA nanostructures for the study of fundamental biological processes.


Asunto(s)
Mastocitos , Nanoestructuras , Ratas , Animales , Mastocitos/fisiología , Ligandos , Antígenos , Haptenos/química , Inmunoglobulina E/metabolismo , Receptores de IgE , Nanoestructuras/química , ADN
10.
Sci Total Environ ; 856(Pt 2): 159146, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36191709

RESUMEN

This research studies the acute toxicity of real contaminated soils (topsoil and subsoil) with hazardous chlorinated organic compounds (COCs) from lindane manufacturing wastes. The Microtox® bioassay was used to determine the toxicity of soils (modified Basic Solid Phase Test), soil elutriates (Basic Test), and organic extracts (adapted Organic Solvent Sample Solubilization Test), in which hydrophobic organic compounds are soluble. The acute toxicity of these persistent contaminants (hexachlorocyclohexanes, HCH isomers, as particulate matter in topsoil, and COCs, from dense non-aqueous phase liquid, DNAPL, in subsoil) and the commercial compounds were also measured. Soils tested showed different contaminant levels (topsoil: 0.9-1149 mg/kg and subsoil: 20-9528 mg/kg). Soil contaminants distribution, concentration and acute toxicity were highly related to the contamination source (HCHs or DNAPL). Soils, organic extracts, and subsoil elutriates presented high toxicity, highlighting the need for remediation of these sites. EC50 was calculated in the three-test applied for the soils tested. EC50 vs. COCs concentration in soils and soil elutriates showed an asymptotic trend, explained by the low pollutants solubility in the aqueous phase. Contrarily, EC50 vs. soil COCs concentration was more linear in the case of the organic extracts. This test was the most reliable from statistical analysis. The three methods reveal interesting and complementary information and are necessary for a complete overview of the acute toxicity of contaminated soils.


Asunto(s)
Hexaclorociclohexano , Contaminantes del Suelo , Hexaclorociclohexano/análisis , Suelo/química , Contaminantes del Suelo/análisis , Contaminación Ambiental/análisis , Bioensayo
11.
Molecules ; 27(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36558105

RESUMEN

The discharge of lindane wastes in unlined landfills causes groundwater and soil pollution worldwide. The liquid waste generated (a mixture of 28 chlorinated organic compounds, COCs) constitutes a dense non-aqueous phase liquid (DNAPL) that is highly persistent. Although in situ chemical oxidation (ISCO) is effective for degrading organic pollutants, the low COCs solubility requires high reaction times. Simultaneous injection of surfactants and oxidants (S-ISCO) is a promising technology to solve the limitation of ISCO treatment. The current work studies the remediation of highly polluted soil (COCs = 3682 mg/kg) obtained at the Sardas landfill (Sabiñáñigo, Spain) by ISCO and S-ISCO treatments. Special attention is paid to acute soil toxicity before and after the soil treatment. Microtox®, modified Basic Solid-Phase Test (mBSPT) and adapted Organic Solvent Sample Solubilization Test (aOSSST) were used for this scope. Persulfate (PS, 210 mM) activated by alkali (NaOH, 210 mM) was used in both ISCO and S-ISCO runs. A non-ionic and biodegradable surfactant selected in previous work, Emulse®3 (E3, 5, and 10 g/L), was applied in S-ISCO experiments. Runs were performed in soil columns filled with 50 g of polluted soil, with eight pore volumes (Pvs) of the reagents injected and 96 h between successive Pv injections. The total treatment time was 32 days. The results were compared with those corresponding without surfactant (ISCO). After remediation treatments, soils were water-washed, simulating the conditions of groundwater flux in the subsoil. The treatments applied highly reduced soil toxicity (final soil toxicity equivalent to that obtained for non-contaminated soil, mBSPT) and organic extract toxicity (reduction > 95%, aOSSST). Surfactant application did not cause an increase in the toxicity of the treated soil, highlighting its suitability for full-scale applications.


Asunto(s)
Agua Subterránea , Surfactantes Pulmonares , Contaminantes del Suelo , Contaminantes Químicos del Agua , Hexaclorociclohexano/toxicidad , Tensoactivos/toxicidad , Contaminación Ambiental , Oxidación-Reducción , Contaminantes Químicos del Agua/química , Suelo/química , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/química , Agua Subterránea/química
12.
Small ; 18(35): e2202704, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35934828

RESUMEN

News from an old acquaintance: The streptavidin (STV)-biotin binding system is frequently used for the decoration of DNA origami nanostructures (DON) to study biological systems. Here, a surprisingly high dynamic of the STV/DON interaction is reported, which is affected by the structure of the DNA linker system. Analysis of different mono- or bi-dentate linker architectures on DON with a novel high-speed atomic force microscope (HS-AFM) enabling acquisition times as short as 50 ms per frame gave detailed insights into the dynamics of the DON/STV interaction, revealing dwell times in the sub-100 millisecond range. The linker systems are also used to present biotinylated epidermal growth factor on DON to study the activation of the epidermal growth factor receptor signaling cascade in HeLa cells. The studies confirm that cellular activation correlated with the binding properties of linker-specific STV/DON interactions observed by HS-AFM. This work sheds more light on the commonly used STV/DON system and will help to further standardize the use of DNA nanostructures for the study of biological processes.


Asunto(s)
ADN , Nanoestructuras , ADN/química , Células HeLa , Humanos , Ligandos , Microscopía de Fuerza Atómica , Nanoestructuras/química , Estreptavidina/química
13.
Artículo en Inglés | MEDLINE | ID: mdl-35955089

RESUMEN

Chlorinated organic compounds (COCs) are among the more toxic organic compounds frequently found in soil and groundwater. Among these, toxic and low-degradable chlorobenzenes are commonly found in the environment. In this work, an innovative process using hydrogen peroxide as the oxidant, ferrioxalate as the catalyst and a visible light-emitting diode lamp (Vis LED) were applied to successfully oxidize 124-trichlorobenzene (124-TCB) in a saturated aqueous solution of 124-TCB (28 mg L-1) at a neutral pH. The influence of a hydrogen peroxide (HP) concentration (61.5-612 mg L-1), Fe3+ (Fe) dosage (3-10 mg L-1), and irradiation level (Rad) (I = 0.12 W cm-2 and I = 0.18 W cm-2) on 124-TCB conversion and dechlorination was studied. A D-Optimal experimental design combined with response surface methodology (RSM) was implemented to maximize the quality of the information obtained. The ANOVA test was used to assess the significance of the model and its coefficients. The maximum pollutant conversion at 180 min (98.50%) was obtained with Fe = 7 mg L-1, HP = 305 mg L-1, and I = 0.12 W cm-2. The effect of two inorganic anions usually presents in real groundwater (bicarbonate and chloride, 600 mg L-1 each) was investigated under those optimized operating conditions. A slight reduction in the 124-TCB conversion after 180 min of reaction was noticed in the presence of bicarbonate (8.31%) and chloride (7.85%). Toxicity was studied with Microtox® (Azur Environmental, Carlsbad, CA, USA) bioassay, and a remarkable toxicity decrease was found in the treated samples, with the inhibition proportional to the remaining 124-TCB concentration. That means that nontoxic byproducts are produced in agreement with the high dechlorination degrees noticed.


Asunto(s)
Clorobencenos/química , Peróxido de Hidrógeno , Hierro , Bicarbonatos , Cloruros , Clorobencenos/análisis , Peróxido de Hidrógeno/química , Concentración de Iones de Hidrógeno , Hierro/química , Oxalatos , Oxidación-Reducción
14.
Sci Total Environ ; 751: 141754, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32889469

RESUMEN

The intensive use of organochlorine pesticides, such as lindane (γ-HCH), and the inadequate management of their wastes, is a huge environmental problem. The lindane production during the last century has generated huge volumes of solid wastes of other HCH isomers, causing hot points of soil and groundwater contamination. The soil treated in this work was obtained from a landfill located in the nearby of an old lindane factory, containing α-HCH and ß-HCH as main contaminants. This study addresses for the first time the application of different chemical oxidation treatments, viz. Fenton process (H2O2 + Fe), persulfate (PS) activated by temperature (20 and 40 °C), by alkali (NaOH) and by the combination of alkali and temperature (NaOH, 40 °C) for the remediation of HCH-polluted soils (CHCHs = 155 mg kg-1). The intrinsic characteristics of the soil (high carbonate content) led to high consumption of H2O2 (XH2O2 ≈ 100% at 24 h) and complete iron precipitation, making unappropriated the application of the Fenton process. The efficiency of thermal PS was limited by the low solubility of HCH isomers in the aqueous phase, the high refractoriness of these compounds towards oxidation, and the presence of the contaminants in the form of particulate matter. After 25 days of treatment, a conversion of chlorinated organic compounds (COCs) of 50% was achieved (VL/Wsoil = 2, CPS = 40 g L-1, 40 °C), whereas the application of PS activated by alkali and temperature (40 °C) led to promising results. At pH above 12, HCHs were dehydrochlorinated to trichlorobenzenes, which were further oxidized by hydroxyl radicals. The hydrolysis rate of ß-HCH was the limiting step of the process, and it was favored by increasing the reaction temperature. At 40 °C, a conversion of COCs above 95% was achieved (VL/Wsoil = 2, CPS = 40 g L-1, CNaOH = 13.5 g L-1, 14 days) with low oxidant consumption (XPS = 30%).

15.
Angew Chem Int Ed Engl ; 59(43): 19016-19020, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32681679

RESUMEN

We report on the directed postsynthetic functionalization of soft DNA nanocomposite materials with proteins. Using the example of the functionalization of silica nanoparticle-modified DNA polymer materials with agonists or antagonists of the epidermal growth factor receptor EGFR cell membrane receptor, we demonstrate that hierarchically structured interfaces to living cells can be established. Owing to the modular design principle, even complex DNA nanostructures can be integrated into the materials, thereby enabling the high-precision arrangement of ligands on the lower nanometer length scale. We believe that such complex biohybrid material systems can be used for new applications in biotechnology.


Asunto(s)
ADN/química , Proteínas/química , Técnicas de Cultivo de Célula , Receptores ErbB/efectos de los fármacos , Receptores ErbB/metabolismo , Humanos , Células MCF-7 , Microscopía Fluorescente/métodos , Nanocompuestos , Nanopartículas/química , Fosforilación , Dióxido de Silicio/química
16.
J Environ Manage ; 261: 110240, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32148309

RESUMEN

Chlorinated pesticides were extensively produced in the XX century, generating high amounts of toxic wastes often dumped in the surroundings of the production sites, resulting in hot points of soil and groundwater pollution worldwide. This is the case of Bailín landfill, located in Sabiñánigo (Spain), where groundwater is highly polluted with chlorobenzenes (mono, di, tri and tetra) and hexachlorocyclohexanes. This study addresses the abatement of chlorinated organic compounds (COCs) present in the groundwater coming from the Bailín landfill by thermally activated persulfate, PS (TAP). The influence of temperature (30-50 °C) and oxidant concentration (2-40 g L-1) on the efficiency of COCs (initial concentration of COCs = 57.53 mg L-1, determined by the solubility of the pollutants in water) degradation has been investigated. Raising the reaction temperature and PS concentration the degradation of COCs significantly accelerates, as a result of higher production of sulfate radicals. The thermal activation of PS implies side reactions, involving the unproductive decomposition of this oxidant. The activation energy calculated for this reaction (128.48 kJ mol-1) reveals that is slightly more favored by temperature than the oxidation of COCs by sulfate radicals (102.4-115.72 kJ mol-1). At the selected operating conditions (PS = 10 g L-1, 40 °C), the almost complete conversion of COCs and a dechlorination and mineralization degree above 80% were obtained at 168 h reaction time. A kinetic model, able to adequately predict the experimental concentration of COCs when operating at different temperatures and initial concentration of PS has been proposed.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Compuestos Orgánicos , Oxidación-Reducción , Sulfatos , Instalaciones de Eliminación de Residuos
17.
Nat Commun ; 10(1): 5522, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31797918

RESUMEN

Biomedical applications require substrata that allow for the grafting, colonization and control of eukaryotic cells. Currently available materials are often limited by insufficient possibilities for the integration of biological functions and means for tuning the mechanical properties. We report on tailorable nanocomposite materials in which silica nanoparticles are interwoven with carbon nanotubes by DNA polymerization. The modular, well controllable and scalable synthesis yields materials whose composition can be gradually adjusted to produce synergistic, non-linear mechanical stiffness and viscosity properties. The materials were exploited as substrata that outperform conventional culture surfaces in the ability to control cellular adhesion, proliferation and transmigration through the hydrogel matrix. The composite materials also enable the construction of layered cell architectures, the expansion of embryonic stem cells by simplified cultivation methods and the on-demand release of uniformly sized stem cell spheroids.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Nanocompuestos/química , Nanotubos de Carbono/química , Dióxido de Silicio/química , Adhesión Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , ADN/química , ADN/genética , ADN/metabolismo , Humanos , Hidrogeles/química , Células MCF-7 , Ensayo de Materiales/métodos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Nanocompuestos/ultraestructura , Resistencia a la Tracción , Viscosidad
18.
Heliyon ; 5(11): e02875, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31768444

RESUMEN

Sites contaminated by Dense Non-Aqueous Liquid Phases (DNAPLs) containing chlorinated compounds are a ubiquitous problem caused by spills or the dumping of wastes with no concern for the environment. Their migration by gravity through the subsurface and their accumulation far below ground level make in-situ treatments the most appropriate remediation technologies. In this work, an aqueous solution containing a non-ionic and biodegradable surfactant was injected in the Sardas alluvial layer contaminated at some points with DNAPL (formed by a mixture of more than 28 chlorinated compounds) from lindane production. A volume of 5.28 m3 of an aqueous surfactant emulsion (13 g L-1) was injected at 14.5 m b g.l in the permeable layer (gravel-sand), at a flow rate of 0.6 m3 h-1 and the groundwater was monitored within a test cell (3.5 m radius) built ad hoc. The flow of the injected fluids in the subsurface was also evaluated using a conservative tracer, bromide (130 mg L-1), added to the surfactant solution. Concentration of contaminants, chloride, bromide and surfactant, surface tension and conductivity were measured at the injection point and at three monitoring points over time. High radial dispersion was noticed resulting in high dilution of the injected fluids. The surfactant was not adsorbed in the soil during the injection time, the adsorption of the surfactant took place in the meantime (15 h) between its injection and the groundwater (GW) extraction. The concentration of chlorinated compounds dissolved from the soil in the surfactant aqueous phase when equilibrium was reached (about 850 mg L-1) is related to the moderate average contamination of the soil in the test cell (about 1230 mg kg-1). In contrast, the extraction of the free DNAPL in the altered marls layer was highly enhanced due to the addition of the surfactant. Finally, it was found that the surfactant and the contamination did not migrate from the capture zone.

19.
Biosens Bioelectron ; 137: 287-293, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31125818

RESUMEN

Hypervalent tellurium compounds have a particular reactivity towards thiol compounds which are related to their biological properties. In this work, this property was assembled to tellurium-functionalized surfaces. These compounds were used as linkers in the immobilization process of thiolated biomolecules (such as DNA) on microcantilever surfaces. The telluride derivatives acted as reversible binding agents due to their redox properties, providing the regeneration of microcantilever surfaces and allowing their reuse for further biomolecules immobilizations, recycling the functional surface. Initially, we started from the synthesis of 4-((3-((4-methoxyphenyl) tellanyl) phenyl) amino)-4-oxobutanoic acid, a new compound, which was immobilized on a silicon surface. In nanomechanical systems, the detection involved a hybridization study of thiolated DNA sequences. Fluorescence microscopy technique was used to confirm the immobilization and removal of the telluride-DNA system and provided revealing results about the potentiality of applying redox properties to chalcogen derivatives at surfaces.


Asunto(s)
Técnicas Biosensibles , ADN/química , Silicio/química , Telurio/química , Secuencia de Bases/genética , Nanoestructuras/química , Hibridación de Ácido Nucleico , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
20.
Sci Total Environ ; 666: 631-640, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30807953

RESUMEN

Carbon tetrachloride (CT), a chlorinated organic compound widely used in the chemical industry during the 20th century, is nowadays a ubiquitous contaminant in groundwater and in situ technologies for its destruction are required. In this work, the degradation of CT by the alkaline activation of persulfate (PS) has been studied. Among the pool of radical species generated (hydroxyl radicals, sulfate radicals and superoxide radicals), O2∙- resulted to be the only species responsible for CT abatement. It has been found that the presence of other solvents less polar than water (hydrogen peroxide, acetone, propanol and methanol) improves CT degradation. Among them, methanol was selected as the most adequate co-solvent, leading to the complete elimination of CT (100 mg L-1, 24 h) with a moderate unproductive consumption of the oxidant. The degradation of CT increased proportionally with the concentration of this solvent (from 0.1 to 10 g L-1). The ratio NaOH:PS (from 1 to 8) did not affect the degradation of CT when working with a constant concentration of PS and highly alkaline conditions were maintained. The removal rate of CT increased as the concentration of PS increased (from 20 to 60 g L-1), while the conversion of this pollutant did not depend on its initial concentration (from 10 to 100 mg L-1). A kinetic model that considers the concentration of PS, MeOH and CT and can predict the concentration of CT with reaction time at different operating conditions, has been developed from the experimental data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA