Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr D Struct Biol ; 80(Pt 4): 232-246, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38488730

RESUMEN

Single-particle cryo-electron microscopy has become a widely adopted method in structural biology due to many recent technological advances in microscopes, detectors and image processing. Before being able to inspect a biological sample in an electron microscope, it needs to be deposited in a thin layer on a grid and rapidly frozen. The VitroJet was designed with this aim, as well as avoiding the delicate manual handling and transfer steps that occur during the conventional grid-preparation process. Since its creation, numerous technical developments have resulted in a device that is now widely utilized in multiple laboratories worldwide. It features plasma treatment, low-volume sample deposition through pin printing, optical ice-thickness measurement and cryofixation of pre-clipped Autogrids through jet vitrification. This paper presents recent technical improvements to the VitroJet and the benefits that it brings to the cryo-EM workflow. A wide variety of applications are shown: membrane proteins, nucleosomes, fatty-acid synthase, Tobacco mosaic virus, lipid nanoparticles, tick-borne encephalitis viruses and bacteriophages. These case studies illustrate the advancement of the VitroJet into an instrument that enables accurate control and reproducibility, demonstrating its suitability for time-efficient cryo-EM structure determination.


Asunto(s)
Proteínas de la Membrana , Manejo de Especímenes , Microscopía por Crioelectrón/métodos , Reproducibilidad de los Resultados , Manejo de Especímenes/métodos , Procesamiento de Imagen Asistido por Computador
2.
J Virol ; 96(24): e0136722, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36448797

RESUMEN

Coxsackievirus A9 (CVA9), an enterovirus, is a common cause of pediatric aseptic meningitis and neonatal sepsis. During cell entry, enterovirus capsids undergo conformational changes leading to expansion, formation of large pores, externalization of VP1 N termini, and loss of the lipid factor from VP1. Factors such as receptor binding, heat, and acidic pH can trigger capsid expansion in some enteroviruses. Here, we show that fatty acid-free bovine serum albumin or neutral endosomal ionic conditions can independently prime CVA9 for expansion and genome release. Our results showed that CVA9 treatment with albumin or endosomal ions generated a heterogeneous population of virions, which could be physically separated by asymmetric flow field flow fractionation and computationally by cryo-electron microscopy (cryo-EM) and image processing. We report cryo-EM structures of CVA9 A-particles obtained by albumin or endosomal ion treatment and a control nonexpanded virion to 3.5, 3.3, and 2.9 Å resolution, respectively. Whereas albumin promoted stable expanded virions, the endosomal ionic concentrations induced unstable CVA9 virions which easily disintegrated, losing their genome. Loss of most of the VP4 molecules and exposure of negatively charged amino acid residues in the capsid's interior after expansion created a repulsive viral RNA-capsid interface, aiding genome release. IMPORTANCE Coxsackievirus A9 (CVA9) is a common cause of meningitis and neonatal sepsis. The triggers and mode of action of RNA release into the cell unusually do not require receptor interaction. Rather, a slow process in the endosome, independent of low pH, is required. Here, we show by biophysical separation, cryogenic electron microscopy, and image reconstruction that albumin and buffers mimicking the endosomal ion composition can separately and together expand and prime CVA9 for uncoating. Furthermore, we show in these expanded particles that VP4 is present at only ~10% of the occupancy found in the virion, VP1 is externalized, and the genome is repelled by the negatively charged, repulsive inner surface of the capsid that occurs due to the expansion. Thus, we can now link observations from cell biology of infection with the physical processes that occur in the capsid to promote genome uncoating.


Asunto(s)
Cationes , Enterovirus Humano B , Humanos , Albúminas/farmacología , Proteínas de la Cápside/metabolismo , Cationes/farmacología , Microscopía por Crioelectrón , Endosomas/metabolismo , Enterovirus Humano B/efectos de los fármacos , Enterovirus Humano B/genética , Enterovirus Humano B/ultraestructura , Infecciones por Enterovirus/patología , Infecciones por Enterovirus/virología , ARN/metabolismo , Virión/efectos de los fármacos , Virión/metabolismo , Virión/ultraestructura , Genoma Viral
3.
Viruses ; 14(9)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36146795

RESUMEN

Severe acute respiratory syndrome coronavirus-2 is the causative agent of COVID-19. During the pandemic of 2019-2022, at least 500 million have been infected and over 6.3 million people have died from COVID-19. The virus is pleomorphic, and due to its pathogenicity is often handled in very restrictive biosafety containments laboratories. We developed two effective and rapid purification methods followed by UV inactivation that allow easy downstream handling of the virus. We monitored the purification through titering, sequencing, mass spectrometry and electron cryogenic microscopy. Although pelleting through a sucrose cushion, followed by gentle resuspension overnight gave the best particle recovery, infectivity decreased, and the purity was significantly worse than if using the size exclusion resin Capto Core. Capto Core can be used in batch mode, and was seven times faster than the pelleting method, obviating the need for ultracentrifugation in the containment laboratory, but resulting in a dilute virus. UV inactivation was readily optimized to allow handling of the inactivated samples under standard operating conditions. When containment laboratory space is limited, we recommend the use of Capto Core for purification and UV for inactivation as a simple, rapid workflow prior, for instance, to electron cryogenic microscopy or cell activation experiments.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Proteómica , Sacarosa , Inactivación de Virus
4.
Viruses ; 14(4)2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458522

RESUMEN

Tick-borne encephalitis virus (TBEV) is a pathogenic, enveloped, positive-stranded RNA virus in the family Flaviviridae. Structural studies of flavivirus virions have primarily focused on mosquito-borne species, with only one cryo-electron microscopy (cryo-EM) structure of a tick-borne species published. Here, we present a 3.3 Å cryo-EM structure of the TBEV virion of the Kuutsalo-14 isolate, confirming the overall organisation of the virus. We observe conformational switching of the peripheral and transmembrane helices of M protein, which can explain the quasi-equivalent packing of the viral proteins and highlights their importance in stabilising membrane protein arrangement in the virion. The residues responsible for M protein interactions are highly conserved in TBEV but not in the structurally studied Hypr strain, nor in mosquito-borne flaviviruses. These interactions may compensate for the lower number of hydrogen bonds between E proteins in TBEV compared to the mosquito-borne flaviviruses. The structure reveals two lipids bound in the E protein which are important for virus assembly. The lipid pockets are comparable to those recently described in mosquito-borne Zika, Spondweni, Dengue, and Usutu viruses. Our results thus advance the understanding of tick-borne flavivirus architecture and virion-stabilising interactions.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Animales , Microscopía por Crioelectrón , Culicidae , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/ultraestructura , Proteínas Virales/metabolismo , Virión/metabolismo , Virión/ultraestructura , Virus Zika/metabolismo , Infección por el Virus Zika
5.
Open Biol ; 11(7): 210008, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34315275

RESUMEN

Parechoviruses belong to the genus Parechovirus within the family Picornaviridae and are non-enveloped icosahedral viruses with a single-stranded RNA genome. Parechoviruses include human and animal pathogens classified into six species. Those that infect humans belong to the Parechovirus A species and can cause infections ranging from mild gastrointestinal or respiratory illness to severe neonatal sepsis. There are no approved antivirals available to treat parechovirus (nor any other picornavirus) infections. In this parechovirus review, we focus on the cleaved protein products resulting from the polyprotein processing after translation comparing and contrasting their known or predicted structures and functions to those of other picornaviruses. The review also includes our original analysis from sequence and structure prediction. This review highlights significant structural differences between parechoviral and other picornaviral proteins, suggesting that parechovirus drug development should specifically be directed to parechoviral targets.


Asunto(s)
Parechovirus , Picornaviridae , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia Conservada , Genoma Viral , Genómica/métodos , Humanos , Imagenología Tridimensional , Modelos Moleculares , Parechovirus/clasificación , Parechovirus/genética , Parechovirus/metabolismo , Picornaviridae/clasificación , Picornaviridae/genética , Picornaviridae/metabolismo , Conformación Proteica , ARN Viral , Relación Estructura-Actividad , Proteínas Virales/genética
6.
Commun Biol ; 4(1): 250, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637854

RESUMEN

Enteroviruses pose a persistent and widespread threat to human physical health, with no specific treatments available. Small molecule capsid binders have the potential to be developed as antivirals that prevent virus attachment and entry into host cells. To aid with broad-range drug development, we report here structures of coxsackieviruses B3 and B4 bound to different interprotomer-targeting capsid binders using single-particle cryo-EM. The EM density maps are beyond 3 Å resolution, providing detailed information about interactions in the ligand-binding pocket. Comparative analysis revealed the residues that form a conserved virion-stabilizing network at the interprotomer site, and showed the small molecule properties that allow anchoring in the pocket to inhibit virus disassembly.


Asunto(s)
Antivirales/farmacología , Proteínas de la Cápside/metabolismo , Cápside/efectos de los fármacos , Enterovirus Humano B/efectos de los fármacos , Ensamble de Virus/efectos de los fármacos , Animales , Antivirales/metabolismo , Sitios de Unión , Cápside/metabolismo , Cápside/ultraestructura , Proteínas de la Cápside/ultraestructura , Línea Celular , Chlorocebus aethiops , Microscopía por Crioelectrón , Desarrollo de Medicamentos , Enterovirus Humano B/metabolismo , Enterovirus Humano B/ultraestructura , Ligandos , Simulación del Acoplamiento Molecular , Conformación Proteica
7.
J Virol ; 93(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31189702

RESUMEN

There is limited information about the molecular triggers leading to the uncoating of enteroviruses under physiological conditions. Using real-time spectroscopy and sucrose gradients with radioactively labeled virus, we show at 37°C, the formation of albumin-triggered, metastable uncoating intermediate of echovirus 1 without receptor engagement. This conversion was blocked by saturating the albumin with fatty acids. High potassium but low sodium and calcium concentrations, mimicking the endosomal environment, also induced the formation of a metastable uncoating intermediate of echovirus 1. Together, these factors boosted the formation of the uncoating intermediate, and the infectivity of this intermediate was retained, as judged by end-point titration. Cryo-electron microscopy reconstruction of the virions treated with albumin and high potassium, low sodium, and low calcium concentrations resulted in a 3.6-Å resolution model revealing a fenestrated capsid showing 4% expansion and loss of the pocket factor, similarly to altered (A) particles described for other enteroviruses. The dimer interface between VP2 molecules was opened, the VP1 N termini disordered and most likely externalized. The RNA was clearly visible, anchored to the capsid. The results presented here suggest that extracellular albumin, partially saturated with fatty acids, likely leads to the formation of the infectious uncoating intermediate prior to the engagement with the cellular receptor. In addition, changes in mono- and divalent cations, likely occurring in endosomes, promote capsid opening and genome release.IMPORTANCE There is limited information about the uncoating of enteroviruses under physiological conditions. Here, we focused on physiologically relevant factors that likely contribute to opening of echovirus 1 and other B-group enteroviruses. By combining biochemical and structural data, we show that, before entering cells, extracellular albumin is capable of priming the virus into a metastable yet infectious intermediate state. The ionic changes that are suggested to occur in endosomes can further contribute to uncoating and promote genome release, once the viral particle is endocytosed. Importantly, we provide a detailed high-resolution structure of a virion after treatment with albumin and a preset ion composition, showing pocket factor release, capsid expansion, and fenestration and the clearly visible genome still anchored to the capsid. This study provides valuable information about the physiological factors that contribute to the opening of B group enteroviruses.


Asunto(s)
Albúminas/farmacología , Endosomas/virología , Enterovirus Humano B/efectos de los fármacos , Ácidos Grasos/metabolismo , Animales , Proteínas de la Cápside/química , Línea Celular , Chlorocebus aethiops , Microscopía por Crioelectrón , Enterovirus Humano B/química , Calor , Modelos Moleculares
8.
PLoS Biol ; 17(6): e3000281, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31185007

RESUMEN

Rhino- and enteroviruses are important human pathogens, against which no antivirals are available. The best-studied inhibitors are "capsid binders" that fit in a hydrophobic pocket of the viral capsid. Employing a new class of entero-/rhinovirus inhibitors and by means of cryo-electron microscopy (EM), followed by resistance selection and reverse genetics, we discovered a hitherto unknown druggable pocket that is formed by viral proteins VP1 and VP3 and that is conserved across entero-/rhinovirus species. We propose that these inhibitors stabilize a key region of the virion, thereby preventing the conformational expansion needed for viral RNA release. A medicinal chemistry effort resulted in the identification of analogues targeting this pocket with broad-spectrum activity against Coxsackieviruses B (CVBs) and compounds with activity against enteroviruses (EV) of groups C and D, and even rhinoviruses (RV). Our findings provide novel insights in the biology of the entry of entero-/rhinoviruses and open new avenues for the design of broad-spectrum antivirals against these pathogens.


Asunto(s)
Proteínas de la Cápside/ultraestructura , Cápside/efectos de los fármacos , Cápside/ultraestructura , Secuencia de Aminoácidos/genética , Aminoácidos/genética , Antígenos Virales , Antivirales , Sitios de Unión , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Microscopía por Crioelectrón/métodos , Desarrollo de Medicamentos/métodos , Enterovirus/efectos de los fármacos , Enterovirus/ultraestructura , Humanos , Modelos Moleculares , Conformación Molecular , Rhinovirus/efectos de los fármacos , Rhinovirus/ultraestructura , Proteínas Virales/química , Proteínas Virales/ultraestructura , Virión/genética
9.
J Virol ; 93(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30463974

RESUMEN

Human parechovirus 3 (HPeV3) infection is associated with sepsis characterized by significant immune activation and subsequent tissue damage in neonates. Strategies to limit infection have been unsuccessful due to inadequate molecular diagnostic tools for early detection and the lack of a vaccine or specific antiviral therapy. Toward the latter, we present a 2.8-Å-resolution structure of HPeV3 in complex with fragments from a neutralizing human monoclonal antibody, AT12-015, using cryo-electron microscopy (cryo-EM) and image reconstruction. Modeling revealed that the epitope extends across neighboring asymmetric units with contributions from capsid proteins VP0, VP1, and VP3. Antibody decoration was found to block binding of HPeV3 to cultured cells. Additionally, at high resolution, it was possible to model a stretch of RNA inside the virion and, from this, identify the key features that drive and stabilize protein-RNA association during assembly.IMPORTANCE Human parechovirus 3 (HPeV3) is receiving increasing attention as a prevalent cause of sepsis-like symptoms in neonates, for which, despite the severity of disease, there are no effective treatments available. Structural and molecular insights into virus neutralization are urgently needed, especially as clinical cases are on the rise. Toward this goal, we present the first structure of HPeV3 in complex with fragments from a neutralizing monoclonal antibody. At high resolution, it was possible to precisely define the epitope that, when targeted, prevents virions from binding to cells. Such an atomic-level description is useful for understanding host-pathogen interactions and viral pathogenesis mechanisms and for finding potential cures for infection and disease.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Parechovirus/inmunología , Parechovirus/ultraestructura , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Cápside/metabolismo , Proteínas de la Cápside/inmunología , Línea Celular Tumoral , Microscopía por Crioelectrón/métodos , Epítopos/metabolismo , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/ultraestructura
10.
Sci Rep ; 7(1): 12075, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28935894

RESUMEN

Human parechovirus 3 (HPeV3), a member of the Picornavirus family, is frequently detected worldwide. However, the observed seropositivity rates for HPeV3 neutralizing antibodies (nAbs) vary from high in Japan to low in the Netherlands and Finland. To study if this can be explained by technical differences or antigenic diversity among HPeV3 strains included in the serological studies, we determined the neutralizing activity of Japanese and Dutch intravenous immunoglobulin batches (IVIG), a rabbit HPeV3 hyperimmune polyclonal serum, and a human HPeV3-specific monoclonal antibody (mAb) AT12-015, against the HPeV3 A308/99 prototype strain and clinical isolates from Japan, the Netherlands and Australia, collected between 1989 and 2015. The rabbit antiserum neutralized all HPeV3 isolates whereas the neutralization capacity of the IVIG batches varied, and the mAb exclusively neutralized the A308/99 strain. Mapping of the amino acid variation among a subset of the HPeV3 strains on an HPeV3 capsid structure revealed that the majority of the surface-exposed amino acid variation was located in the VP1. Furthermore, amino acid mutations in a mAb AT12-015-resistant HPeV3 A308/99 variant indicated the location for potential antigenic determinants. Virus aggregation and the observed antigenic diversity in HPeV3 can explain the varying levels of nAb seropositivity reported in previous studies.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Variación Antigénica/inmunología , Proteínas de la Cápside/inmunología , Parechovirus/inmunología , Infecciones por Picornaviridae/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/genética , Variación Antigénica/genética , Proteínas de la Cápside/genética , Humanos , Sueros Inmunes/inmunología , Japón , Mutación , Países Bajos , Pruebas de Neutralización , Parechovirus/clasificación , Parechovirus/fisiología , Infecciones por Picornaviridae/virología , Conejos , Homología de Secuencia de Aminoácido , Especificidad de la Especie
11.
J Gen Virol ; 98(6): 1145-1158, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28631594

RESUMEN

Picornaviruses are the most commonly encountered infectious agents in mankind. They typically cause mild infections of the gastrointestinal or respiratory tract, but sometimes also invade the central nervous system. There, they can cause severe diseases with long-term sequelae and even be lethal. The most infamous picornavirus is poliovirus, for which significant epidemics of poliomyelitis were reported from the end of the nineteenth century. A successful vaccination campaign has brought poliovirus close to eradication, but neurological diseases caused by other picornaviruses have increasingly been reported since the late 1990s. In this review we focus on enterovirus 71, coxsackievirus A16, enterovirus 68 and human parechovirus 3, which have recently drawn attention because of their links to severe neurological diseases. We discuss the clinical relevance of these viruses and the primary role of humoral immunity in controlling them, and summarize current knowledge on the neutralization of such viruses by antibodies.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Enfermedades Virales del Sistema Nervioso Central/inmunología , Infecciones por Picornaviridae/inmunología , Picornaviridae/inmunología , Animales , Enfermedades Virales del Sistema Nervioso Central/virología , Modelos Animales de Enfermedad , Humanos , Picornaviridae/fisiología , Infecciones por Picornaviridae/virología
12.
Nat Commun ; 7: 11387, 2016 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-27435188

RESUMEN

The poorly studied picornavirus, human parechovirus 3 (HPeV3) causes neonatal sepsis with no therapies available. Our 4.3-Å resolution structure of HPeV3 on its own and at 15 Å resolution in complex with human monoclonal antibody Fabs demonstrates the expected picornavirus capsid structure with three distinct features. First, 25% of the HPeV3 RNA genome in 60 sites is highly ordered as confirmed by asymmetric reconstruction, and interacts with conserved regions of the capsid proteins VP1 and VP3. Second, the VP0 N terminus stabilizes the capsid inner surface, in contrast to other picornaviruses where on expulsion as VP4, it forms an RNA translocation channel. Last, VP1's hydrophobic pocket, the binding site for the antipicornaviral drug, pleconaril, is blocked and thus inappropriate for antiviral development. Together, these results suggest a direction for development of neutralizing antibodies, antiviral drugs based on targeting the RNA-protein interactions and dissection of virus assembly on the basis of RNA nucleation.


Asunto(s)
Cápside/metabolismo , Sepsis Neonatal/virología , Parechovirus/fisiología , Infecciones por Picornaviridae/virología , Secuencia de Aminoácidos , Cápside/química , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Parechovirus/química , Parechovirus/genética , Unión Proteica , Conformación Proteica , Alineación de Secuencia , Ensamble de Virus
13.
Virology ; 434(2): 271-7, 2012 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23089255

RESUMEN

We report an ion exchange chromatographic purification method powerful for preparation of virus particles with ultrapure quality. The technology is based on large pore size monolithic anion exchangers, quaternary amine (QA) and diethyl aminoethyl (DEAE). These were applied to membrane-containing icosahedral bacteriophage PRD1, which bound specifically to both matrices. Virus particles eluted from the columns retained their infectivity, and were homogenous with high specific infectivity. The yields of infectious particles were up to 80%. Purified particles were recovered at high concentrations, approximately 5mg/ml, sufficient for virological, biochemical and structural analyses. We also tested the applicability of the monolithic anion exchange purification on a filamentous bacteriophage phi05_2302. Monolithic ion exchange chromatography is easily scalable and can be combined with other preparative virus purification methods.


Asunto(s)
Bacteriófago PRD1/aislamiento & purificación , Cromatografía por Intercambio Iónico/métodos , Inovirus/aislamiento & purificación , Virología/métodos , Bacteriófago PRD1/fisiología , Inovirus/fisiología , Viabilidad Microbiana
14.
J Virol ; 84(7): 3682-9, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20089654

RESUMEN

During the search for haloarchaeal viruses, we isolated and characterized a new pleomorphic lipid-containing virus, Haloarcula hispanica pleomorphic virus 1 (HHPV-1), that infects the halophilic archaeon Haloarcula hispanica. The virus contains a circular double-stranded DNA genome of 8,082 bp in size. The organization of the genome shows remarkable synteny and amino acid sequence similarity to the genome and predicted proteins of the halovirus HRPV-1, a pleomorphic single-stranded DNA virus that infects a halophilic archaeon Halorubrum sp. Analysis of the two halovirus sequences, as well as the entire nucleotide sequence of the 10.8-kb pHK2-plasmid and a 12.6-kb chromosomal region in Haloferax volcanii, allows us to suggest a new group of closely related viruses with genomes of either single-stranded or double-stranded DNA. Currently, closely related viruses are considered to have the same genome type. Our observation clearly contradicts this categorization and indicates that we should reconsider the way we classify viruses. Our results also provide a new example of related viruses where the viral structural proteins have not diverged as much as the proteins associated with genome replication. This result further strengthens the proposal for higher-order classification to be based on virion architecture rather than on genome type or replication mechanism.


Asunto(s)
Virus de Archaea/genética , ADN Viral/análisis , Haloarcula/virología , Virus de Archaea/química , Virus de Archaea/clasificación , Genoma Viral , Sistemas de Lectura Abierta , Fosfolípidos/análisis , Plásmidos , Proteínas Virales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA