Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cancer Immunol Res ; 12(1): 91-106, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-37931247

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) continues to have a dismal prognosis. The poor survival of patients with PDA has been attributed to a high rate of early metastasis and low efficacy of current therapies, which partly result from its complex immunosuppressive tumor microenvironment. Previous studies from our group and others have shown that tumor-associated macrophages (TAM) are instrumental in maintaining immunosuppression in PDA. Here, we explored the role of Notch signaling, a key regulator of immune response, within the PDA microenvironment. We identified Notch pathway components in multiple immune cell types within human and mouse pancreatic cancer. TAMs, the most abundant immune cell population in the tumor microenvironment, expressed high levels of Notch receptors, with cognate ligands such as JAG1 expressed on tumor epithelial cells, endothelial cells, and fibroblasts. TAMs with activated Notch signaling expressed higher levels of immunosuppressive mediators, suggesting that Notch signaling plays a role in macrophage polarization within the PDA microenvironment. Genetic inhibition of Notch in myeloid cells led to reduced tumor size and decreased macrophage infiltration in an orthotopic PDA model. Combination of pharmacologic Notch inhibition with PD-1 blockade resulted in increased cytotoxic T-cell infiltration, tumor cell apoptosis, and smaller tumor size. Our work implicates macrophage Notch signaling in the establishment of immunosuppression and indicates that targeting the Notch pathway may improve the efficacy of immune-based therapies in patients with PDA.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Macrófagos Asociados a Tumores/metabolismo , Células Endoteliales/metabolismo , Transducción de Señal , Microambiente Tumoral
2.
Cancer Discov ; 13(6): 1324-1345, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37021392

RESUMEN

The adult healthy human pancreas has been poorly studied given the lack of indication to obtain tissue from the pancreas in the absence of disease and rapid postmortem degradation. We obtained pancreata from brain dead donors, thus avoiding any warm ischemia time. The 30 donors were diverse in age and race and had no known pancreas disease. Histopathologic analysis of the samples revealed pancreatic intraepithelial neoplasia (PanIN) lesions in most individuals irrespective of age. Using a combination of multiplex IHC, single-cell RNA sequencing, and spatial transcriptomics, we provide the first-ever characterization of the unique microenvironment of the adult human pancreas and of sporadic PanIN lesions. We compared healthy pancreata to pancreatic cancer and peritumoral tissue and observed distinct transcriptomic signatures in fibroblasts and, to a lesser extent, macrophages. PanIN epithelial cells from healthy pancreata were remarkably transcriptionally similar to cancer cells, suggesting that neoplastic pathways are initiated early in tumorigenesis. SIGNIFICANCE: Precursor lesions to pancreatic cancer are poorly characterized. We analyzed donor pancreata and discovered that precursor lesions are detected at a much higher rate than the incidence of pancreatic cancer, setting the stage for efforts to elucidate the microenvironmental and cell-intrinsic factors that restrain or, conversely, promote malignant progression. See related commentary by Hoffman and Dougan, p. 1288. This article is highlighted in the In This Issue feature, p. 1275.


Asunto(s)
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adulto , Humanos , Transcriptoma , Páncreas/patología , Neoplasias Pancreáticas/patología , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patología , Carcinoma Ductal Pancreático/patología , Microambiente Tumoral/genética
3.
Elife ; 122023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36727849

RESUMEN

An extensive fibroinflammatory stroma rich in macrophages is a hallmark of pancreatic cancer. In this disease, it is well appreciated that macrophages are immunosuppressive and contribute to the poor response to immunotherapy; however, the mechanisms of immune suppression are complex and not fully understood. Immunosuppressive macrophages are classically defined by the expression of the enzyme Arginase 1 (ARG1), which we demonstrated is potently expressed in pancreatic tumor-associated macrophages from both human patients and mouse models. While routinely used as a polarization marker, ARG1 also catabolizes arginine, an amino acid required for T cell activation and proliferation. To investigate this metabolic function, we used a genetic and a pharmacologic approach to target Arg1 in pancreatic cancer. Genetic inactivation of Arg1 in macrophages, using a dual recombinase genetically engineered mouse model of pancreatic cancer, delayed formation of invasive disease, while increasing CD8+ T cell infiltration. Additionally, Arg1 deletion induced compensatory mechanisms, including Arg1 overexpression in epithelial cells, namely Tuft cells, and Arg2 overexpression in a subset of macrophages. To overcome these compensatory mechanisms, we used a pharmacological approach to inhibit arginase. Treatment of established tumors with the arginase inhibitor CB-1158 exhibited further increased CD8+ T cell infiltration, beyond that seen with the macrophage-specific knockout, and sensitized the tumors to anti-PD1 immune checkpoint blockade. Our data demonstrate that Arg1 drives immune suppression in pancreatic cancer by depleting arginine and inhibiting T cell activation.


Asunto(s)
Arginasa , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Arginasa/genética , Arginasa/metabolismo , Arginina/metabolismo , Linfocitos T CD8-positivos , Macrófagos , Neoplasias Pancreáticas/patología
4.
bioRxiv ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36711890

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) continues to have a dismal prognosis. The poor survival of patients with PDA has been attributed to a high rate of early metastasis and low efficacy of current therapies, which partly result from its complex immunosuppressive tumor microenvironment. Previous studies from our group and others have shown that tumor-associated macrophages (TAMs) are instrumental in maintaining immunosuppression in PDA. Here, we explored the role of Notch signaling, a key regulator of immune response, within the PDA microenvironment. We identified Notch pathway components in multiple immune cell types within human and mouse pancreatic cancer. TAMs, the most abundant immune cell population in the tumor microenvironment, express high levels of Notch receptors with cognate ligands such as JAG1 expressed on tumor epithelial cells, endothelial cells and fibroblasts. TAMs with activated Notch signaling expressed higher levels of immunosuppressive mediators including arginase 1 (Arg1) suggesting that Notch signaling plays a role in macrophage polarization within the PDA microenvironment. Combination of Notch inhibition with PD-1 blockade resulted in increased cytotoxic T cell infiltration, tumor cell apoptosis, and smaller tumor size. Our work implicates macrophage Notch signaling in the establishment of immunosuppression and indicates that targeting the Notch pathway may improve the efficacy of immune-based therapies in PDA patients.

5.
bioRxiv ; 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36712058

RESUMEN

The adult healthy human pancreas has been poorly studied given lack of indication to obtain tissue from the pancreas in the absence of disease and rapid postmortem degradation. We obtained pancreata from brain dead donors thus avoiding any warm ischemia time. The 30 donors were diverse in age and race and had no known pancreas disease. Histopathological analysis of the samples revealed PanIN lesions in most individuals irrespective of age. Using a combination of multiplex immunohistochemistry, single cell RNA sequencing, and spatial transcriptomics, we provide the first ever characterization of the unique microenvironment of the adult human pancreas and of sporadic PanIN lesions. We compared healthy pancreata to pancreatic cancer and peritumoral tissue and observed distinct transcriptomic signatures in fibroblasts, and, to a lesser extent, macrophages. PanIN epithelial cells from healthy pancreata were remarkably transcriptionally similar to cancer cells, suggesting that neoplastic pathways are initiated early in tumorigenesis. Statement of significance: The causes underlying the onset of pancreatic cancer remain largely unknown, hampering early detection and prevention strategies. Here, we show that PanIN are abundant in healthy individuals and present at a much higher rate than the incidence of pancreatic cancer, setting the stage for efforts to elucidate the microenvironmental and cell intrinsic factors that restrain, or, conversely, promote, malignant progression.

6.
J Exp Med ; 220(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36239683

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is associated with activation of WNT signaling. Whether this signaling pathway regulates the tumor microenvironment has remained unexplored. Through single-cell RNA sequencing of human pancreatic cancer, we discovered that tumor-infiltrating CD4+ T cells express TCF7, encoding for the transcription factor TCF1. We conditionally inactivated Tcf7 in CD4 expressing T cells in a mouse model of pancreatic cancer and observed changes in the tumor immune microenvironment, including more CD8+ T cells and fewer regulatory T cells, but also compensatory upregulation of PD-L1. We then used a clinically available inhibitor of Porcupine, a key component of WNT signaling, and observed similar reprogramming of the immune response. WNT signaling inhibition has limited therapeutic window due to toxicity, and PD-L1 blockade has been ineffective in PDA. Here, we show that combination targeting reduces pancreatic cancer growth in an experimental model and might benefit the treatment of pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Antígeno B7-H1/genética , Linfocitos T CD8-positivos , Carcinoma Ductal Pancreático/metabolismo , Humanos , Terapia de Inmunosupresión , Linfocitos Infiltrantes de Tumor , Ratones , Neoplasias Pancreáticas/patología , Factores de Transcripción/metabolismo , Microambiente Tumoral , Vía de Señalización Wnt , Neoplasias Pancreáticas
7.
Oncogenesis ; 11(1): 56, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109493

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by an extensive fibroinflammatory stroma and often experiences conditions of insufficient oxygen availability or hypoxia. Cancer-associated fibroblasts (CAF) are a predominant and heterogeneous population of stromal cells within the pancreatic tumor microenvironment. Here, we uncover a previously unrecognized role for hypoxia in driving an inflammatory phenotype in PDAC CAFs. We identify hypoxia as a strong inducer of tumor IL1ɑ expression, which is required for inflammatory CAF (iCAF) formation. Notably, iCAFs preferentially reside in hypoxic regions of PDAC. Our data implicate hypoxia as a critical regulator of CAF heterogeneity in PDAC.

8.
Cell Mol Gastroenterol Hepatol ; 13(6): 1673-1699, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35245687

RESUMEN

BACKGROUND & AIMS: Oncogenic Kirsten Rat Sarcoma virus (KRAS) is the hallmark mutation of human pancreatic cancer and a driver of tumorigenesis in genetically engineered mouse models of the disease. Although the tumor cell-intrinsic effects of oncogenic Kras expression have been widely studied, its role in regulating the extensive pancreatic tumor microenvironment is less understood. METHODS: Using a genetically engineered mouse model of inducible and reversible oncogenic Kras expression and a combination of approaches that include mass cytometry and single-cell RNA sequencing we studied the effect of oncogenic KRAS in the tumor microenvironment. RESULTS: We have discovered that non-cell autonomous (ie, extrinsic) oncogenic KRAS signaling reprograms pancreatic fibroblasts, activating an inflammatory gene expression program. As a result, fibroblasts become a hub of extracellular signaling, and the main source of cytokines mediating the polarization of protumorigenic macrophages while also preventing tissue repair. CONCLUSIONS: Our study provides fundamental knowledge on the mechanisms underlying the formation of the fibroinflammatory stroma in pancreatic cancer and highlights stromal pathways with the potential to be exploited therapeutically.


Asunto(s)
Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Animales , Fibroblastos/metabolismo , Virus del Sarcoma Murino de Kirsten/metabolismo , Ratones , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
9.
J Clin Invest ; 132(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35166242

RESUMEN

A challenge in cancer treatment is targeting cancer cells while sparing normal cells. Thus, identifying cancer-specific neoepitopes is an active research area. Neoepitopes are generated by the accumulation of mutations; however, deadly cancer types, including pancreatic cancer, have a low mutational burden and, consequently, a paucity of neoantigens. In this issue of the JCI, Lim, Zhou, and colleagues describe a neoepitope generated upon proteolytic cleavage of the transmembrane CUB domain containing protein 1 (CDCP1). CDCP1 is overexpressed in cancer and portends a worse prognosis; previous attempts to target CDCP1 reduced cancer growth, but adversely affected the host. Here, the authors generated an antibody that specifically targeted cleaved CDCP1 (c-CDCP1) and developed a drug conjugate, a vector for radioactive ions, and a mediator of T cell activation. The therapeutics inhibited pancreatic cancer cell growth in vitro and in vivo. Exploiting proteolytic cleavage-derived neoantigens opens an attractive way for specifically targeting cancer cells.


Asunto(s)
Proteínas de Neoplasias , Neoplasias Pancreáticas , Antígenos CD/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/uso terapéutico , Moléculas de Adhesión Celular , Línea Celular Tumoral , Humanos , Proteínas de Neoplasias/metabolismo , Páncreas/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
10.
Cancer Res ; 81(16): 4305-4318, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34049975

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with few effective therapeutic options. PDAC is characterized by an extensive fibroinflammatory stroma that includes abundant infiltrating immune cells. Tumor-associated macrophages (TAM) are prevalent within the stroma and are key drivers of immunosuppression. TAMs in human and murine PDAC are characterized by elevated expression of apolipoprotein E (ApoE), an apolipoprotein that mediates cholesterol metabolism and has known roles in cardiovascular and Alzheimer's disease but no known role in PDAC. We report here that ApoE is also elevated in peripheral blood monocytes in PDAC patients, and plasma ApoE protein levels stratify patient survival. Orthotopic implantation of mouse PDAC cells into syngeneic wild-type or in ApoE-/- mice showed reduced tumor growth in ApoE-/- mice. Histologic and mass cytometric (CyTOF) analysis of these tumors showed an increase in CD8+ T cells in tumors in ApoE-/- mice. Mechanistically, ApoE induced pancreatic tumor cell expression of Cxcl1 and Cxcl5, known immunosuppressive factors, through LDL receptor and NF-κB signaling. Taken together, this study reveals a novel immunosuppressive role of ApoE in the PDAC microenvironment. SIGNIFICANCE: This study shows that elevated apolipoprotein E in PDAC mediates immune suppression and high serum apolipoprotein E levels correlate with poor patient survival.See related commentary by Sherman, p. 4186.


Asunto(s)
Apolipoproteínas E/metabolismo , Quimiocina CXCL1/biosíntesis , FN-kappa B/metabolismo , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Animales , Línea Celular Tumoral , Fibroblastos/metabolismo , Humanos , Sistema Inmunológico , Terapia de Inmunosupresión , Inflamación , Macrófagos/metabolismo , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , RNA-Seq , Receptores de LDL/metabolismo , Transducción de Señal , Análisis de la Célula Individual , Resultado del Tratamiento
11.
Sci Rep ; 11(1): 7077, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33782497

RESUMEN

DNA damage activates cell cycle checkpoint proteins ATR and CHK1 to arrest cell cycle progression, providing time for repair and recovery. Consequently, inhibitors of ATR (ATRi) and CHK1 (CHK1i) enhance damage-induced cell death. Intriguingly, both CHK1i and ATRi alone elicit cytotoxicity in some cell lines. Sensitivity has been attributed to endogenous replications stress, but many more cell lines are sensitive to ATRi than CHK1i. Endogenous activation of the DNA damage response also did not correlate with drug sensitivity. Sensitivity correlated with the appearance of γH2AX, a marker of DNA damage, but without phosphorylation of mitotic markers, contradicting suggestions that the damage is due to premature mitosis. Sensitivity to ATRi has been associated with ATM mutations, but dysfunction in ATM signaling did not correlate with sensitivity. CHK1i and ATRi circumvent replication stress by reactivating stalled replicons, a process requiring a low threshold activity of CDK2. In contrast, γH2AX induced by single agent ATRi and CHK1i requires a high threshold activity CDK2. Hence, phosphorylation of different CDK2 substrates is required for cytotoxicity induced by replication stress plus ATRi/CHK1i as compared to their single agent activity. In summary, sensitivity to ATRi and CHK1i as single agents is elicited by premature hyper-activation of CDK2.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Humanos
12.
Life Sci Alliance ; 4(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33782087

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is accompanied by reprogramming of the local microenvironment, but changes at distal sites are poorly understood. We implanted biomaterial scaffolds, which act as an artificial premetastatic niche, into immunocompetent tumor-bearing and control mice, and identified a unique tumor-specific gene expression signature that includes high expression of C1qa, C1qb, Trem2, and Chil3 Single-cell RNA sequencing mapped these genes to two distinct macrophage populations in the scaffolds, one marked by elevated C1qa, C1qb, and Trem2, the other with high Chil3, Ly6c2 and Plac8 In mice, expression of these genes in the corresponding populations was elevated in tumor-associated macrophages compared with macrophages in the normal pancreas. We then analyzed single-cell RNA sequencing from patient samples, and determined expression of C1QA, C1QB, and TREM2 is elevated in human macrophages in primary tumors and liver metastases. Single-cell sequencing analysis of patient blood revealed a substantial enrichment of the same gene signature in monocytes. Taken together, our study identifies two distinct tumor-associated macrophage and monocyte populations that reflects systemic immune changes in pancreatic ductal adenocarcinoma patients.


Asunto(s)
Monocitos/metabolismo , Neoplasias Pancreáticas/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Adulto , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Proteínas Portadoras , Complemento C1q , Femenino , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Receptores de Complemento , Receptores Inmunológicos/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcriptoma/genética , Microambiente Tumoral/genética , Macrófagos Asociados a Tumores/fisiología , Neoplasias Pancreáticas
13.
J Eukaryot Microbiol ; 66(3): 424-434, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30136341

RESUMEN

Research pertaining to the two closely-related microsporidian genera Nosema and Vairimorpha is hindered by inconsistencies in species differentiation within and between the two clades. One proposal to better delimit these genera is to restructure the Nosema around a "True Nosema" clade, consisting of species that share a characteristic reversed ribosomal DNA operon arrangement and small subunit (SSU) ribosomal DNA sequences similar to that of the Nosema type species, N. bombycis. Using this framework, we assess two distinct microsporidia recovered from the forest insect Bruce spanworm (Operophtera bruceata) by sequencing their SSU and internal transcribed spacer regions. Phylogenetic analyses place one of our isolates within the proposed True Nosema clade close to N. furnacalis and place the other in the broader Nosema/Vairimorpha clade close to N. thomsoni. We found that 25% of Bruce spanworm cadavers collected over the four-year study period were infected with microsporidia, but no infections were detected in cadavers of the Bruce spanworm's invasive congener, the winter moth (O. brumata), collected over the same period. We comment on these findings as they relate to the population dynamics of the Bruce spanworm-winter moth system in this region, and more broadly, on the value of ribosomal DNA operon arrangement in Nosema systematics.


Asunto(s)
Mariposas Nocturnas/microbiología , Nosema/fisiología , Animales , ADN Espaciador Ribosómico/análisis , Larva/microbiología , Mariposas Nocturnas/crecimiento & desarrollo , New England , Nosema/genética , ARN de Hongos/análisis
14.
ACS Pharmacol Transl Sci ; 2(3): 168-182, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32259055

RESUMEN

DNA damage activates checkpoints to arrest cell cycle progression in S and G2 phases, thereby providing time for repair and recovery. The combination of DNA-damaging agents and inhibitors of CHK1 (CHK1i) is an emerging strategy for sensitizing cancer cells. CHK1i induce replication on damaged DNA and mitosis before repair is complete, and this occurs in a majority of cell lines. However, ∼15% of cancer cell lines are hypersensitive to single-agent CHK1i. As both abrogation of S phase arrest and single-agent activity depend on CDK2, this study resolved how activation of CDK2 can be essential for both replication and cytotoxicity. S phase arrest was induced with the topoisomerase I inhibitor SN38; the addition of CHK1i rapidly activated CDK2, inducing S phase progression that was inhibited by the CDK2 inhibitor CVT-313. In contrast, DNA damage and cytotoxicity induced by single-agent CHK1i in hypersensitive cell lines were also inhibited by CVT-313 but at 20-fold lower concentrations. The differential sensitivity to CVT-313 is explained by different activity thresholds required for phosphorylation of CDK2 substrates. While the critical CDK2 substrates are not yet defined, we conclude that hypersensitivity to single-agent CHK1i depends on phosphorylation of substrates that require high CDK2 activity levels. Surprisingly, CHK1i did not increase SN38-mediated cytotoxicity. In contrast, while inhibition of WEE1 also abrogated S phase arrest, it more directly activated CDK1, induced premature mitosis, and enhanced cytotoxicity. Hence, while high activity of CDK2 is critical for cytotoxicity of single-agent CHK1i, CDK1 is additionally required for sensitivity to the drug combination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA