Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 10(9): 3158-3175, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39096289

RESUMEN

SARS-CoV-2 and HCoV-OC43 belong to the same ß genus of the Coronaviridae family. SARS-CoV-2 was responsible for the recent COVID-19 pandemic, and HCoV-OC43 is the etiological agent of mild upper respiratory tract infections. SARS-COV-2 and HCoV-OC43 co-infections were found in children with respiratory symptoms during the COVID-19 pandemic. The two ß-coronaviruses share a high degree of homology between the 3CLpro active sites, so much so that the safer HCoV-OC43 has been suggested as a tool for the identification of new anti-SARS-COV-2 agents. Compounds 5 and 24 inhibited effectively both Wuhan and British SARS-CoV-2 patient isolates in Vero E6 cells and the HCoV-OC43 in MRC-5 cells at low micromolar concentrations. The inhibition was apparently exerted via targeting the 3CLpro active sites of both viruses. Compounds 5 and 24 at 100 µM inhibited the SARS-CoV-2 3CLpro activity of 61.78 and 67.30%, respectively. These findings highlight 5 and 24 as lead compounds of a novel class of antiviral agents with the potential to treat SARS-COV-2 and HCoV-OC43 infections.


Asunto(s)
Antivirales , Coronavirus Humano OC43 , SARS-CoV-2 , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Humanos , Coronavirus Humano OC43/efectos de los fármacos , Coronavirus Humano OC43/fisiología , Chlorocebus aethiops , Animales , Células Vero , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Línea Celular
2.
Antiviral Res ; 226: 105897, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38685531

RESUMEN

Human respiratory viruses have an enormous impact on national health systems, societies, and economy due to the rapid airborne transmission and epidemic spread of such pathogens, while effective specific antiviral drugs to counteract infections are still lacking. Here, we identified two Keggin-type polyoxometalates (POMs), [TiW11CoO40]8- (TiW11Co) and [Ti2PW10O40]7- (Ti2PW10), endowed with broad-spectrum activity against enveloped and non-enveloped human respiratory viruses, i.e., coronavirus (HCoV-OC43), rhinovirus (HRV-A1), respiratory syncytial virus (RSV-A2), and adenovirus (AdV-5). Ti2PW10 showed highly favorable selectivity indexes against all tested viruses (SIs >700), and its antiviral potential was further investigated against human coronaviruses and rhinoviruses. This POM was found to inhibit replication of multiple HCoV and HRV strains, in different cell systems. Ti2PW10 did not affect virus binding or intracellular viral replication, but selectively inhibited the viral entry. Serial passaging of virus in presence of the POM revealed a high barrier to development of Ti2PW10-resistant variants of HRV-A1 or HCoV-OC43. Moreover, Ti2PW10 was able to inhibit HRV-A1 production in a 3D model of the human nasal epithelium and, importantly, the antiviral treatment did not determine cytotoxicity or tissue damage. A mucoadhesive thermosensitive in situ hydrogel formulation for nasal delivery was also developed for Ti2PW10. Overall, good biocompatibility on cell lines and human nasal epithelia, broad-spectrum activity, and absence of antiviral resistance development reveal the potential of Ti2PW10 as an antiviral candidate for the development of a treatment of acute respiratory viral diseases, warranting further studies to identify the specific target/s of the polyanion and assess its clinical potential.


Asunto(s)
Antivirales , Compuestos de Tungsteno , Internalización del Virus , Replicación Viral , Humanos , Internalización del Virus/efectos de los fármacos , Antivirales/farmacología , Replicación Viral/efectos de los fármacos , Compuestos de Tungsteno/farmacología , Rhinovirus/efectos de los fármacos , Rhinovirus/fisiología , Línea Celular , Infecciones del Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Coronavirus Humano OC43/efectos de los fármacos , Coronavirus Humano OC43/fisiología , Animales
3.
Cell Rep Med ; 5(2): 101376, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38228147

RESUMEN

The bacterial genotoxin colibactin promotes colorectal cancer (CRC) tumorigenesis, but systematic assessment of its impact on DNA repair is lacking, and its effect on response to DNA-damaging chemotherapeutics is unknown. We find that CRC cell lines display differential response to colibactin on the basis of homologous recombination (HR) proficiency. Sensitivity to colibactin is induced by inhibition of ATM, which regulates DNA double-strand break repair, and blunted by HR reconstitution. Conversely, CRC cells chronically infected with colibactin develop a tolerant phenotype characterized by restored HR activity. Notably, sensitivity to colibactin correlates with response to irinotecan active metabolite SN38, in both cell lines and patient-derived organoids. Moreover, CRC cells that acquire colibactin tolerance develop cross-resistance to SN38, and a trend toward poorer response to irinotecan is observed in a retrospective cohort of CRCs harboring colibactin genomic island. Our results shed insight into colibactin activity and provide translational evidence on its chemoresistance-promoting role in CRC.


Asunto(s)
Neoplasias Colorrectales , Escherichia coli , Péptidos , Policétidos , Humanos , Irinotecán/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Estudios Retrospectivos , ADN/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/microbiología
4.
Microorganisms ; 11(10)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37894118

RESUMEN

Valacyclovir (VACV) was developed as a prodrug of the most common anti-herpetic drug Acyclovir (ACV), aiming to enhance its bioavailability. Nevertheless, prolonged VACV oral treatment may lead to the development of important side effects. Nanotechnology-based formulations for vaginal administration represent a promising approach to increase the concentration of the drug at the site of infection, limiting systemic drug exposure and reducing systemic toxicity. In this study, VACV-loaded nanodroplet (ND) formulations, optimized for vaginal delivery, were designed. Cell-based assays were then carried out to evaluate the antiviral activity of VACV loaded in the ND system. The chitosan-shelled ND exhibited an average diameter of about 400 nm and a VACV encapsulation efficiency of approximately 91% and was characterized by a prolonged and sustained release of VACV. Moreover, a modification of chitosan shell with an anionic cyclodextrin, sulfobutyl ether ß-cyclodextrin (SBEßCD), as a physical cross-linker, increased the stability and mucoadhesion capability of the nanosystem. Biological experiments showed that SBEßCD-chitosan NDs enhanced VACV antiviral activity against the herpes simplex viruses type 1 and 2, most likely due to the long-term controlled release of VACV loaded in the ND and an improved delivery of the drug in sub-cellular compartments.

5.
Adv Nutr ; 14(6): 1389-1415, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37604306

RESUMEN

Human milk (HM) is considered the best source of nutrition for infant growth and health. This nourishment is unique and changes constantly during lactation to adapt to the physiological needs of the developing infant. It is also recognized as a potential route of transmission of some viral pathogens although the presence of a virus in HM rarely leads to a disease in an infant. This intriguing paradox can be explained by considering the intrinsic antiviral properties of HM. In this comprehensive and schematically presented review, we have described what viruses have been detected in HM so far and what their potential transmission risk through breastfeeding is. We have provided a description of all the antiviral compounds of HM, along with an analysis of their demonstrated and hypothesized mechanisms of action. Finally, we have also analyzed the impact of HM pasteurization and storage methods on the detection and transmission of viruses, and on the antiviral compounds of HM. We have highlighted that there is currently a deep knowledge on the potential transmission of viral pathogens through breastfeeding and on the antiviral properties of HM. The current evidence suggests that, in most cases, it is unnecessarily to deprive an infant of this high-quality nourishment and that the continuation of breastfeeding is in the best interest of the infant and the mother.


Asunto(s)
Leche Humana , Virus , Lactante , Femenino , Humanos , Lactancia Materna , Lactancia , Antivirales
6.
Inorg Chem ; 62(33): 13195-13204, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37555777

RESUMEN

Three gallium(III)- and thallium(III)-containing polyoxopalladates (POPs) have been synthesized and structurally characterized in the solid state and in solution, namely, the phosphate-capped 12-palladate nanocubes [XPd12O8(PO4)8]13- (X = GaIII, GaPd12P8; X = TlIII, TlPd12P8) and the 23-palladate double-cube [Tl2IIIPd23P14O70(OH)2]20- (Tl2Pd23P14). The cuboid POPs, GaPd12P8 and TlPd12P8, are solution stable as verified by the respective 31P, 71Ga, and 205Tl nuclear magnetic resonance (NMR) spectra. Of prime interest, the spin-spin coupling schemes allowed for an intimate study of the solution behavior of the TlIII-containing POPs via a combination of 31P and 205Tl NMR, including the stoichiometry of the major fragments of Tl2Pd23P14. Moreover, biological studies demonstrated the antitumor and antiviral activity of GaPd12P8 and TlPd12P8, which were validated to be as efficient as cis-platinum against human melanoma and acute promyelocytic leukemia cells. Furthermore, GaPd12P8 and TlPd12P8 exerted inhibitory activity against two herpetic viruses, HSV-2 and HCMV, in a dose-response manner.


Asunto(s)
Galio , Talio , Humanos , Talio/química , Galio/farmacología , Galio/química , Resonancia Magnética Nuclear Biomolecular , Espectroscopía de Resonancia Magnética , Imagen por Resonancia Magnética
7.
Pediatr Res ; 94(3): 956-964, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37059899

RESUMEN

BACKGROUND: There is extensive evidence that Holder pasteurization (HoP) (30 min at 62.5 °C) has harmful effects on the bioactivities of human milk (HM). We previously demonstrated that lowering HoP temperature is sufficient to inactivate Cytomegalovirus (HCMV). Here, we analyzed the effect of lowering time/temperature on the antiviral activity against HCMV and IgA levels of HM. METHODS: Eighty HM samples from five mothers were pasteurized in a range of temperature (62.5-56 °C) and time (40-10 min) in a conventional setting of Human Milk Bank. Unpasteurized HM from each mother was used as control. The samples were assayed against HCMV-AD169 strain in cell cultures and IgA levels were determined by ELISA. RESULTS: All HM samples exhibited anti-HCMV activity, to a different extent. An improvement of antiviral activity was observed in samples treated at 60, 58 and 56 °C compared to those at 62.5 °C, with ID50 values near those of unpasteurized milk. Similarly, better retention in IgA levels was observed by reducing the temperature of treatment. CONCLUSIONS: We demonstrated that a 2.5 °C reduction of heat treatment significantly preserved the IgA content and fully restored the anti-HCMV activity of HM, supporting this variant of HoP as a valid alternative to preserve HM bioactivities. IMPACT: This work questions the standard HoP and opens the debate on whether the pasteurization temperature commonly used in Human Milk Banks should be lowered to better preserve the biological components of the milk. A reduction of HoP temperature at 60 °C determined a significant preservation of anti-HCMV activity and IgA content of donor HM, compared to standard HoP. This alternative HoP is highly feasible compared to other substitute pasteurization techniques, since it would employ the same pasteurizer equipment found in most Human Milk Banks.


Asunto(s)
Bancos de Leche Humana , Leche Humana , Humanos , Temperatura , Pasteurización/métodos , Inmunoglobulina A , Antivirales/farmacología
8.
Eur J Med Chem ; 248: 115081, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36623328

RESUMEN

Zika virus (ZIKV) and Usutu virus (USUV) are two emerging flaviviruses mostly transmitted by mosquitos. ZIKV is associated with microcephaly in newborns and the less-known USUV, with its reported neurotropism and its extensive spread in Europe, represents a growing concern for human health. There is still no approved vaccine or specific antiviral against ZIKV and USUV infections. The main goal of this study is to investigate the anti-ZIKV and anti-USUV activity of a new library of compounds and to preliminarily investigate the mechanism of action of the selected hit compounds in vitro. Two potent anti-ZIKV and anti-USUV agents, namely ZDL-115 and ZDL-116, were discovered, both presenting low cytotoxicity, cell-line independent antiviral activity in the low micromolar range and ability of reducing viral progeny production. The analysis of the structure-activity relationship (SAR) revealed that introduction of 2-deoxyribose to 3-arene was fundamental to enhance the solubility and improve the antiviral action. Additionally, we demonstrated that ZDL-115 and ZDL-116 are significantly active against both viruses when added on cells for at least 24 h prior to viral inoculation or immediately post-infection. The docking analysis showed that ZDL-116 could target the host vitamin D receptor (VDR) and viral proteins. Future experiments will be focused on compound modification to discover analogues that are more potent and on the clarification of the mechanism of action and the specific drug target. The discovery and the development of a novel anti-flavivirus drug will have a significant impact in a context where there are no fully effective antiviral drugs or vaccines for most flaviviruses.


Asunto(s)
Flavivirus , Infección por el Virus Zika , Virus Zika , Recién Nacido , Animales , Humanos , Antivirales/farmacología , Infección por el Virus Zika/tratamiento farmacológico
9.
Pediatr Res ; 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513714

RESUMEN

BACKGROUND: The antiviral role of glycosaminoglycans in human milk (HM-GAGs) has been poorly investigated. They are highly sulfated polysaccharides, which were proposed to act as decoy receptors according to their structure. The aim of this study is to evaluate the antiviral potential and the mechanism of action of total and individual HM-GAGs against three pediatric clinically relevant viruses: respiratory syncytial virus (RSV), cytomegalovirus (HCMV), and rotavirus. METHODS: HM-GAGs were isolated from HM and a library of individual GAGs, structurally related to HM-GAGs, was prepared. The antiviral activity of HM-GAGs and the impact of thermal treatment were investigated in vitro by specific antiviral assays. RESULTS: We demonstrated that HM-GAGs are endowed with anti-HCMV and anti-RSV activity and that they act by altering virus attachment to cell. We clarified the contribution of individual HM-GAGs, showing a specific structure-related activity. We did not observe any alteration of HM-GAG antiviral activity after thermal treatment. CONCLUSIONS: We showed that HM-GAGs contribute to the overall antiviral activity of HM, likely exerting a synergic action with other HM antiviral agents. HM-GAGs can now be added to the list of endogenous factors that may reduce breast-milk-acquired HCMV symptomatic infections and protecting infants from respiratory tract infections by RSV. IMPACT: HM-GAGs have been poorly investigated for their antiviral action so far. We demonstrated that HM-GAGs are endowed with significant anti-HCMV and anti-RSV activity and that they are able to alter virus binding to the cell. The contribution of individual HM-GAGs is mainly exerted by the FMHep and is not based on a simple charge interaction between the virus and sulfate groups but involves a specific GAG structural configuration. Our results contribute to identifying the multiple factors synergically acting in mediating HM antiviral properties and to clarifying their specific mechanism of action.

10.
Int J Mol Sci ; 23(2)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35055133

RESUMEN

Herpesviruses are highly prevalent in the human population, and frequent reactivations occur throughout life. Despite antiviral drugs against herpetic infections, the increasing appearance of drug-resistant viral strains and their adverse effects prompt the research of novel antiherpetic drugs for treating lesions. Peptides obtained from natural sources have recently become of particular interest for antiviral therapy applications. In this work, we investigated the antiviral activity of the peptide A-3302-B, isolated from a marine bacterium, Micromonospora sp., strain MAG 9-7, against herpes simplex virus type 1, type 2, and human cytomegalovirus. Results showed that the peptide exerted a specific inhibitory activity against HSV-2 with an EC50 value of 14 µM. Specific antiviral assays were performed to investigate the mechanism of action of A-3302-B. We demonstrated that the peptide did not affect the expression of viral proteins, but it inhibited the late events of the HSV-2 replicative cycle. In detail, it reduced the cell-to-cell virus spread and the transmission of the extracellular free virus by preventing the egress of HSV-2 progeny from the infected cells. The dual antiviral and previously reported anti-inflammatory activities of A-3302-B, and its effect against an acyclovir-resistant HSV-2 strain are attractive features for developing a therapeutic to reduce the transmission of HSV-2 infections.


Asunto(s)
Antivirales/farmacología , Herpesvirus Humano 2/fisiología , Micromonospora/química , Péptidos/farmacología , Animales , Antivirales/química , Antivirales/aislamiento & purificación , Chlorocebus aethiops , Citomegalovirus/efectos de los fármacos , Citomegalovirus/fisiología , Prepucio/citología , Prepucio/virología , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 2/efectos de los fármacos , Humanos , Masculino , Estructura Molecular , Péptidos/química , Péptidos/aislamiento & purificación , Células Vero , Liberación del Virus/efectos de los fármacos
11.
Front Pediatr ; 9: 640638, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34386465

RESUMEN

One of the main concerns in human milk banks (HMB) is the transmission of human cytomegalovirus (HCMV) that could be present in the milk of infected women. There are consistent data showing that this virus is destroyed by Holder pasteurization (62.5°C for 30 min), but there is a lack of information about the response of the virus to the treatment at lower temperatures in strict HMB conditions. In order to analyze the effectiveness of different temperatures of pasteurization to eliminate HCMV in human milk, a preliminary assay was performed incubating HCMV-spiked raw milk samples from donor mothers at tested temperatures in a PCR thermocycler and the viral infectivity was assayed on cell cultures. No signs of viral replication were observed after treatments at temperatures equal or >53°C for 30, 20, and 10 min, 58°C for 5 min, 59°C for 2 min, and 60°C for 1 min. These data were confirmed in a pasteurizer-like model introducing HCMV-spiked milk in disposable baby bottles. No viral infectivity was detected on cell cultures after heating treatment of milk for 30 min at temperatures from 56 to 60°C. Thus, our results show that by using conventional pasteurization conditions, temperatures in the range of 56-60°C are enough to inactivate HCMV. Consequently, we consider that, in order to provide a higher quality product, the current recommendation to pasteurize both mother's own milk and donated milk at 62.5°C must be re-evaluated.

12.
Antiviral Res ; 189: 105055, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33713730

RESUMEN

The current emergency of the novel coronavirus SARS-CoV2 urged the need for broad-spectrum antiviral drugs as the first line of treatment. Coronaviruses are a large family of viruses that already challenged humanity in at least two other previous outbreaks and are likely to be a constant threat for the future. In this work we developed a pipeline based on in silico docking of known drugs on SARS-CoV1/2 RNA-dependent RNA polymerase combined with in vitro antiviral assays on both SARS-CoV2 and the common cold human coronavirus HCoV-OC43. Results showed that certain drugs displayed activity for both viruses at a similar inhibitory concentration, while others were specific. In particular, the antipsychotic drug lurasidone and the antiviral drug elbasvir showed promising activity in the low micromolar range against both viruses with good selectivity index.


Asunto(s)
Antivirales/farmacología , Benzofuranos/farmacología , Coronavirus Humano OC43/efectos de los fármacos , Reposicionamiento de Medicamentos , Imidazoles/farmacología , Clorhidrato de Lurasidona/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Línea Celular Tumoral , Chlorocebus aethiops , Simulación por Computador , Fibroblastos , Humanos , Células Vero , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
13.
J Hum Lact ; 37(1): 122-134, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33534629

RESUMEN

BACKGROUND: It is known that breastfeeding protects the infant from enteric and respiratory infections; however, the antiviral properties of human milk against enteric and respiratory viruses are largely unexplored. RESEARCH AIMS: To explore the antiviral activity of human preterm colostrum against rotavirus and respiratory syncytial virus and to assess whether the derived extracellular vesicle contribute to this activity. METHODS: We used a cross-sectional, prospective two-group non-experimental design. Colostra were collected from mothers of preterm newborns (N = 10) and extracellular vesicles were purified and characterized. The antiviral activity of colostra and derived extracellular vesicles were tested in vitro against rotavirus and respiratory syncytial virus and the step of viral replication inhibited by extracellular vesicles was investigated. RESULTS: Each sample of colostrum and colostrum-derived extracellular vesicles had significant antiviral activity with a wide interpersonal variability. Mechanism of action studies demonstrated that extracellular vesicles acted by interfering with the early steps of the viral replicative cycle. CONCLUSION: We demonstrated the intrinsic antiviral activity of human colostrum against rotavirus and respiratory syncytial virus and we showed that extracellular vesicles substantially contribute to the overall protective effect. Our results contribute to unravelling novel mechanisms underlying the functional role of human milk as a protective and therapeutic agent in preterm infants.


Asunto(s)
Calostro/química , Vesículas Extracelulares , Virus Sincitiales Respiratorios , Rotavirus , Animales , Lactancia Materna , Línea Celular , Chlorocebus aethiops , Estudios Transversales , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Embarazo , Estudios Prospectivos , Replicación Viral
14.
PLoS Negl Trop Dis ; 14(10): e0008713, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33027261

RESUMEN

The benefits of human milk are mediated by multiple nutritional, trophic, and immunological components, able to promote infant's growth, maturation of its immature gut, and to confer protection against infections. Despite these widely recognized properties, breast-feeding represents an important mother-to-child transmission route of some viral infections. Different studies show that some flaviviruses can occasionally be detected in breast milk, but their transmission to the newborn is still controversial. The aim of this study is to investigate the antiviral activity of human milk (HM) in its different stages of maturation against two emerging flaviviruses, namely Zika virus (ZIKV) and Usutu virus (USUV) and to verify whether HM-derived extracellular vesicles (EVs) and glycosaminoglycans (GAGs) contribute to the milk protective effect. Colostrum, transitional and mature milk samples were collected from 39 healthy donors. The aqueous fractions were tested in vitro with specific antiviral assays and EVs and GAGs were derived and characterized. HM showed antiviral activity against ZIKV and USUV at all the stages of lactation with no significant differences in the activity of colostrum, transitional or mature milk. Mechanism of action studies demonstrated that colostrum does not inactivate viral particles, but it hampers the binding of both flaviviruses to cells. We also demonstrated that HM-EVs and HM-GAGs contribute, at least in part, to the anti-ZIKV and anti-USUV action of HM. This study discloses the intrinsic antiviral activity of HM against ZIKV and USUV and demonstrates the contribution of two bioactive components in mediating its protective effect. Since the potential infectivity of HM during ZIKV and USUV infection is still unclear, these data support the World Health Organization recommendations about breast-feeding during ZIKV infection and could contribute to producing new guidelines for a possible USUV epidemic.


Asunto(s)
Infecciones por Flavivirus/prevención & control , Flavivirus/inmunología , Leche Humana/inmunología , Virus Zika/inmunología , Adulto , Animales , Supervivencia Celular , Chlorocebus aethiops , Femenino , Humanos , Células Vero , Inactivación de Virus , Internalización del Virus
15.
Planta Med ; 86(18): 1363-1374, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32937663

RESUMEN

Zika virus, an arthropod-borne flavivirus, is an emerging healthcare threat worldwide. Zika virus is responsible for severe neurological effects, such as paralytic Guillain-Barrè syndrome, in adults, and also congenital malformations, especially microcephaly. No specific antiviral drugs and vaccines are currently available, and treatments are palliative, but medicinal plants show great potential as natural sources of anti-Zika phytochemicals. This study deals with the investigation of the composition, cytotoxicity, and anti-Zika activity of Punica granatum leaf ethanolic extract, fractions, and phytoconstituents. P. granatum leaves were collected from different areas in Italy and Greece in different seasons. Crude extracts were analyzed and fractionated, and the pure compounds were isolated. The phytochemical and biomolecular fingerprint of the pomegranate leaves was determined. The antiviral activities of the leaf extract, fractions, and compounds were investigated against the MR766 and HPF2013 Zika virus strains in vitro. Both the extract and its fractions were found to be active against Zika virus infection. Of the compounds isolated, ellagic acid showed particular anti-Zika activities, with EC50 values of 30.86 µM for MR766 and 46.23 µM for HPF2013. The mechanism of action was investigated using specific antiviral assays, and it was demonstrated that ellagic acid was primarily active as it prevented Zika virus infection and was able to significantly reduce Zika virus progeny production. Our data demonstrate the anti-Zika activity of pomegranate leaf extract and ellagic acid for the first time. These findings identify ellagic acid as a possible anti-Zika candidate compound that can be used for preventive and therapeutic interventions.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Ácido Elágico/farmacología , Humanos , Fitoquímicos , Granada (Fruta) , Infección por el Virus Zika/tratamiento farmacológico
16.
Int J Pharm ; 587: 119676, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32738458

RESUMEN

Acyclovir is the gold standard drug for herpes simplex virus type 2 (HSV-2) infection treatment. Vaginal topical therapy with acyclovir is hampered due to its poor bioavailability, low retention at the vaginal mucosa, thus requiring high doses and frequent administrations. Nanocarriers have been proposed to overcome the challenges associated with antiviral delivery. This work aims at developing a novel formulation consisting of sulfobutyl ether-ß-cyclodextrin decorated nanodroplets for acyclovir topical delivery to improve its antiviral effectiveness. To obtain acyclovir-loaded nanodroplets, the drug was previously complexed with sulfobutyl ether-ß-cyclodextrin, and then incorporated in the nanodroplet chitosan shell via electrostatic interaction. The acyclovir-cyclodextrin inclusion complex was characterized by phase solubility, DSC, FTIR studies. The nanodroplets showed an average diameter of about 400 nm and positive surface charge. Acyclovir was efficiently incorporated in the nanodroplets (about 97% of encapsulation efficiency) and slowly released over time. The acyclovir-loaded nanodroplets exhibited an enhanced antiviral activity compared to the free drug against HSV-2 in cell cultures, which might be ascribed to a higher intracellular accumulation of the drug in nanodroplet-treated cells than in free acyclovir-treated cells. Based on these results, this new nanoformulation paves the way for the development of a future nanomicrobicide for the HSV-2 infections.


Asunto(s)
Quitosano , beta-Ciclodextrinas , Aciclovir , Antivirales , Éteres , Femenino , Herpesvirus Humano 2 , Humanos
17.
Microorganisms ; 8(7)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708203

RESUMEN

Breast milk is a complex biofluid that nourishes infants, supports their growth and protects them from diseases. However, at the same time, breastfeeding is a transmission route for human cytomegalovirus (HCMV), with preterm infants being at a great risk of congenital disease. The discrepancy between high HCMV transmission rates and the few reported cases of infants with severe clinical illness is likely due to the protective effect of breast milk. The aim of this study was to investigate the anti-HCMV activity of human preterm colostrum and clarify the role of colostrum-derived extracellular vesicles (EVs). Preterm colostrum samples were collected and the EVs were purified and characterized. The in vitro anti-HCMV activity of both colostrum and EVs was tested against HCMV, and the viral replication step inhibited by colostrum-purified EVs was examined. We investigated the putative role EV surface proteins play in impairing HCMV infection using shaving experiments and proteomic analysis. The obtained results confirmed the antiviral action of colostrum against HCMV and demonstrated a remarkable antiviral activity of colostrum-derived EVs. Furthermore, we demonstrated that EVs impair the attachment of HCMV to cells, with EV surface proteins playing a role in mediating this action. These findings contribute to clarifying the mechanisms that underlie the protective role of human colostrum against HCMV infection.

18.
Inorg Chem ; 59(5): 2978-2987, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32037809

RESUMEN

We have synthesized and structurally characterized three tetra-(p-tolyl)antimony(III)-containing heteropolytungstates, [{(p-tolyl)SbIII}4(A-α-XW9O34)2]n- [X = PV (1-P), AsV (1-As), or GeIV (1-Ge)], in aqueous solution using conventional, one-pot procedures. The polyanions 1-P, 1-As, and 1-Ge were fully characterized in the solid state and in solution and were shown to be soluble and stable in aqueous medium at pH 7. Biological studies demonstrated that all three polyanions possess significant antibacterial and antitumor activities. The minimum inhibitory concentrations of 1-P, 1-As, and 1-Ge were determined against four kinds of bacteria, including the two pathogenic bacteria strains, Vibrio parahaemolyticus and Vibrio vulnificus. The three novel polyanions also showed high cytotoxic potency in the human cell lines A549 (non-small cell lung cancer), CH1/PA-1 (ovarian teratocarcinoma), and SW480 (colon carcinoma).


Asunto(s)
Antibacterianos/farmacología , Antimonio/farmacología , Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Tungsteno/farmacología , Células A549 , Antibacterianos/síntesis química , Antibacterianos/química , Antimonio/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Bacillus subtilis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Ensayos de Selección de Medicamentos Antitumorales , Escherichia coli/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Células Tumorales Cultivadas , Tungsteno/química , Vibrio parahaemolyticus/efectos de los fármacos , Vibrio vulnificus/efectos de los fármacos
19.
Planta Med ; 86(4): 267-275, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31968380

RESUMEN

Infections caused by HSV-2 are a public health concern worldwide, and there is still a great demand for the discovery of novel anti-herpes virus agents effective against strains resistant to current antiviral agents. In this context, medicinal plants represent an alternative source of active compounds for developing efficient antiviral therapies. The aim of this study was to evaluate the antiviral activity of Arisaema tortuosum, a plant used in the traditional medicine of India. A chloroform soluble fraction of the leaves exhibited anti-HSV-2 activity with a selectivity index of 758. The extract was also active against acyclovir-resistant HSV-2 and HSV-1. The mechanism of action of the extract was investigated evidencing inhibition of both early and late events of the HSV-2 replicative cycle. A HPLC-PDA-MS/MS analysis showed the presence of flavonoids including apigenin and luteolin in the chloroform extract (CE). Apigenin and luteolin showed a high inhibitory activity with EC50 values of 0.05 and 0.41 µg/mL, respectively. Both compounds exhibited antiviral activity when added up to 6 h post infection and were able to reduce the viral progeny production. In addition, apigenin interfered with cell-to-cell virus spread.


Asunto(s)
Antivirales , Arisaema , Herpes Simple , Herpesvirus Humano 2 , India , Extractos Vegetales , Espectrometría de Masas en Tándem , Células Vero
20.
J Dairy Sci ; 102(6): 4857-4869, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30981494

RESUMEN

Human rotaviruses represent a major cause of severe diarrheal disease in infants and young children. The limited impact of oral vaccines on global estimates of rotavirus mortality and the suboptimal use of oral rehydration justify the need for alternative prophylactic and therapeutic strategies, especially for immunocompromised hosts. The protective effects of colostrum-the first milk produced during the initial 24 to 48 h after parturition-are well documented in the literature. In particular, the ingestion of hyperimmune bovine colostrum has been proposed as an alternative preventive approach against human rotavirus gastroenteritis. Although the immunization of pregnant cows with human rotavirus boosts the release of specific immunoglobulin G in bovine colostrum, it raises regulatory and safety issues. In this study, we demonstrated that the conventional bovine rotavirus vaccine is sufficient to enhance the anti-human rotavirus protective efficacy of bovine colostrum, thus providing a conservative approach to produce hyperimmune bovine colostrum, making it exploitable as a functional food.


Asunto(s)
Calostro/inmunología , Infecciones por Rotavirus/prevención & control , Vacunas contra Rotavirus/inmunología , Rotavirus/inmunología , Animales , Anticuerpos Antivirales/inmunología , Bovinos , Línea Celular , Chlorocebus aethiops , Diarrea/prevención & control , Femenino , Células HeLa , Humanos , Inmunoglobulina G/inmunología , Embarazo , Vacunas contra Rotavirus/administración & dosificación , Vacunación/veterinaria , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...