Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bioinformatics ; 39(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37326971

RESUMEN

MOTIVATION: Variational autoencoders (VAEs) have rapidly increased in popularity in biological applications and have already successfully been used on many omic datasets. Their latent space provides a low-dimensional representation of input data, and VAEs have been applied, e.g. for clustering of single-cell transcriptomic data. However, due to their non-linear nature, the patterns that VAEs learn in the latent space remain obscure. Hence, the lower-dimensional data embedding cannot directly be related to input features. RESULTS: To shed light on the inner workings of VAE and enable direct interpretability of the model through its structure, we designed a novel VAE, OntoVAE (Ontology guided VAE) that can incorporate any ontology in its latent space and decoder part and, thus, provide pathway or phenotype activities for the ontology terms. In this work, we demonstrate that OntoVAE can be applied in the context of predictive modeling and show its ability to predict the effects of genetic or drug-induced perturbations using different ontologies and both, bulk and single-cell transcriptomic datasets. Finally, we provide a flexible framework, which can be easily adapted to any ontology and dataset. AVAILABILITY AND IMPLEMENTATION: OntoVAE is available as a python package under https://github.com/hdsu-bioquant/onto-vae.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Análisis por Conglomerados
2.
Nat Cancer ; 2(1): 114-128, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-35121888

RESUMEN

Half of the children diagnosed with neuroblastoma (NB) have high-risk disease, disproportionately contributing to overall childhood cancer-related deaths. In addition to recurrent gene mutations, there is increasing evidence supporting the role of epigenetic deregulation in disease pathogenesis. Yet, comprehensive cis-regulatory network descriptions from NB are lacking. Here, using genome-wide H3K27ac profiles across 60 NBs, covering the different clinical and molecular subtypes, we identified four major super-enhancer-driven epigenetic subtypes and their underlying master regulatory networks. Three of these subtypes recapitulated known clinical groups; namely, MYCN-amplified, MYCN non-amplified high-risk and MYCN non-amplified low-risk NBs. The fourth subtype, exhibiting mesenchymal characteristics, shared cellular identity with multipotent Schwann cell precursors, was induced by RAS activation and was enriched in relapsed disease. Notably, CCND1, an essential gene in NB, was regulated by both mesenchymal and adrenergic regulatory networks converging on distinct super-enhancer modules. Overall, this study reveals subtype-specific super-enhancer regulation in NBs.


Asunto(s)
Neuroblastoma , Niño , Humanos , Mutación , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/genética , Secuencias Reguladoras de Ácidos Nucleicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA