Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 25(11): 1625-1636, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945830

RESUMEN

Mitochondrial export into the extracellular space is emerging as a fundamental cellular process implicated in diverse physiological activities. Although a few studies have shed light on the process of discarding damaged mitochondria, how mitochondria are exported and the functions of mitochondrial release remain largely unclear. Here we describe mitopherogenesis, a formerly unknown process that specifically secretes mitochondria through a unique extracellular vesicle termed a 'mitopher'. We observed that during sperm development in male Caenorhabditis elegans, healthy mitochondria are exported out of the spermatids through mitopherogenesis and each of the generated mitophers harbours only one mitochondrion. In mitopherogenesis, the plasma membrane first forms mitochondrion-embedding outward buds, which then promptly bud off and thereby result in the generation of mitophers. Mechanistically, extracellular protease signalling in the testis triggers mitopher formation from spermatids, which is partially mediated by the tyrosine kinase SPE-8. Moreover, mitopherogenesis requires normal microfilament dynamics, whereas myosin VI antagonizes mitopher generation. Strikingly, our three-dimensional electron microscopy analyses indicate that mitochondrial quantity requires precise modulation during sperm development, which is critically mediated by mitopherogenesis. Inhibition of mitopherogenesis causes accumulation of mitochondria in sperm, which may lead to sperm motility and fertility defects. Our findings identify mitopherogenesis as a previously undescribed process for mitochondria-specific ectocytosis, which may represent a fundamental branch of mechanisms underlying mitochondrial quantity control to regulate cell functions during development.


Asunto(s)
Semen , Motilidad Espermática , Animales , Masculino , Semen/metabolismo , Espermatozoides/metabolismo , Fertilidad , Caenorhabditis elegans/genética , Mitocondrias/metabolismo
2.
Appl Spectrosc ; 77(3): 303-307, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36241612

RESUMEN

Coherent anti-Stokes Raman scattering (CARS) spectroscopy plays an important role in chemical analysis for transient flow dynamics. Due to the turbulent ambient conditions, the CARS spectrum often suffers from a poor signal-to-noise ratio (SNR) and cannot provide a convincing measurement. Here, we report on a CARS spectroscopic method using a Bessel beam to enhance the spectral fidelity and SNR in a quasi-turbulent environment. Compared with traditional CARS, the measurement accuracy is significantly improved by taking advantage of the anti-scattering and self-healing characteristics of the Bessel beam. Our preliminary results indicate that Bessel beam CARS could be a promising method for high precision turbulent flow measurement fields.

3.
Front Robot AI ; 8: 639734, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33954163

RESUMEN

Cranes are widely used in the field of construction, logistics, and the manufacturing industry. Cranes that use wire ropes as the main lifting mechanism are deeply troubled by the swaying of heavy objects, which seriously restricts the working efficiency of the crane and even cause accidents. Compared with the single-pendulum crane, the double-pendulum effect crane model has stronger nonlinearity, and its controller design is challenging. In this paper, cranes with a double-pendulum effect are considered, and their nonlinear dynamical models are established. Then, a controller based on the radial basis function (RBF) neural network compensation adaptive method is designed, and a stability analysis is also presented. Finally, the hardware-in-the-loop experimental results show that the neural network compensation control can effectively improve the control performance of the controller in practice.

4.
Light Sci Appl ; 9: 11, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32025294

RESUMEN

The emergence of super-resolution (SR) fluorescence microscopy has rejuvenated the search for new cellular sub-structures. However, SR fluorescence microscopy achieves high contrast at the expense of a holistic view of the interacting partners and surrounding environment. Thus, we developed SR fluorescence-assisted diffraction computational tomography (SR-FACT), which combines label-free three-dimensional optical diffraction tomography (ODT) with two-dimensional fluorescence Hessian structured illumination microscopy. The ODT module is capable of resolving the mitochondria, lipid droplets, the nuclear membrane, chromosomes, the tubular endoplasmic reticulum, and lysosomes. Using dual-mode correlated live-cell imaging for a prolonged period of time, we observed novel subcellular structures named dark-vacuole bodies, the majority of which originate from densely populated perinuclear regions, and intensively interact with organelles such as the mitochondria and the nuclear membrane before ultimately collapsing into the plasma membrane. This work demonstrates the unique capabilities of SR-FACT, which suggests its wide applicability in cell biology in general.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...