Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Gene ; 867: 147346, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-36898514

RESUMEN

Taraxacum kok-saghyz has been identified as one of the most promising alternative rubber crops, with laticifer cells that produce high-quality rubber. To uncover the underlying molecular mechanisms regulating natural rubber biosynthesis under MeJA induction, a reference transcriptome was constructed from nine samples of T. kok-saghyz. MeJA treatment was applied for 0 h (control), 6 h, and 24 h. A total of 7452 differentially expressed genes (DEGs) were identified in response to MeJA stress, relative to the control. Functional enrichment showed that these DEGs were primarily related to hormone signaling, defensive responses, and secondary metabolism. Combined analysis of the DEGs induced by MeJA and high-expression genes in laticifer cells further identified seven DEGs related to natural rubber biosynthesis that were upregulated in latex tissue, suggesting that these candidate genes could prove valuable in studying the mechanism of MeJA-mediated natural rubber biosynthesis. In addition, 415 MeJA-responsive DEGs were from several transcription factor families associated with drought resistance. This study helps to elucidate the mechanism of natural rubber biosynthesis in T. kok-saghyz in response to MeJA stress and identifies key candidate MeJA-induced DEGs in laticifer tissue, as well as a candidate drought-response target gene, whose knowledge will promote the breeding of T. kok-saghyz in the aspect of rubber yields and quality, and drought tolerance.


Asunto(s)
Goma , Taraxacum , Goma/metabolismo , Taraxacum/genética , Taraxacum/metabolismo , Resistencia a la Sequía , Fitomejoramiento , Perfilación de la Expresión Génica , Transcriptoma , Regulación de la Expresión Génica de las Plantas
2.
Plants (Basel) ; 12(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36678964

RESUMEN

Taraxacum kok-saghyz is a model species for studying natural rubber biosynthesis because its root can produce high-quality rubber. Small rubber particle protein (SRPP), a stress-related gene to multiple stress responses, involves in natural rubber biosynthesis. To investigate the transcriptional regulation of the TkSRPP promoter, the full-length promoter PR0 (2188 bp) and its four deletion derivatives, PR1 (1592 bp), PR2 (1274 bp), PR3 (934 bp), and PR4 (450 bp), were fused to ß-glucuronidase (GUS) reporter gene and transformed into tobacco. The GUS tissue staining showed that the five promoters distinctly regulated GUS expression utilizing transient transformation of tobacco. The GUS activity driven by a PR0 promoter was detected in transgenic tobacco leaves, stem and roots, suggesting that the TkSRPP promoter was not tissue-specific. Deletion analyses in transgenic tobacco have demonstrated that the PR3 from -934 bp to -450 bp core region responded strongly to the hormones, methyl jasmonate (MeJA), abscisic acid (ABA), and salicylic acid (SA), and also to injury induction. The TkSRPP gene was highly expressed under hormones and wound-induced conditions. This study reveals the regulation pattern of the SRPP promoter, and provides valuable information for studying natural rubber biosynthesis under hormones and wounding stress.

3.
Plant Sci ; 289: 110246, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31623784

RESUMEN

Adverse environmental conditions, such as cold and drought, can inhibit plant growth, development, and productivity. The isolation and characterization of stress response genes from stress-tolerant plants can provide a better understanding of the underlying adaptive mechanisms. In this study, a novel cold-regulated gene, SikCOR413PM1, was isolated from Saussurea involucrata Kar. et Kir., which is a plant that survives at the high altitudes and in the low temperatures of alpine slopes in northwestern China. SikCOR413PM1 was induced in response to cold and drought in S. involucrata, and phylogenetic analysis revealed that the gene groups with a COR gene encoding a COR413PM protein family member. Subcellular localization of a SikCOR413PM1-green fluorescent fusion protein showed that SikCOR413PM1 was localized to the plasma membrane. A transgenic tobacco (Nicotiana tabacum) system was employed to investigate the possible role of SikCOR413PM1 in cold and drought tolerance. Analyses of growth, germination and survival rates, relative water content, malondialdehyde content, relative electrolyte leakage, and maximal photochemical efficiency of photosystem II showed that transgenic tobacco plants expressing SikCOR413PM1 were more tolerant to cold and drought stresses than WT plants. SikCOR413PM1 overexpression was also accompanied by constitutive activation of NtDREB1 and NtDREB3, two cold-responsive transcription factor genes, and NtERD10A and NtERD10B, two cold-induced genes. The expression levels of downstream transcription factor genes NtDREB3, NtERD10C, NtERD10D, and NtLEA5 were also induced in SikCOR413PM1-expressing transgenic plants under drought conditions. Our results suggest that the overexpression of SikCOR413PM1 induces changes in tobacco plants, and facilitates enhanced tolerance to cold and drought stresses.


Asunto(s)
Aclimatación/genética , Frío , Sequías , Nicotiana/fisiología , Proteínas de Plantas/genética , Saussurea/genética , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Saussurea/metabolismo , Alineación de Secuencia , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...