Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39091597

RESUMEN

PD1/PD-L1 checkpoint inhibitors are at the forefront of cancer immunotherapies. However, the overall response rate remains only 10-30%. Even among initial responders, drug resistance often occurs, which can lead to prolonged use of a futile therapy in the race with the fatal disease. It would be ideal to closely monitor key indicators of patients' immune responsiveness, such as circulating PD-L1 levels. Traditional PD-L1 detection methods, such as ELISA, are limited in sensitivity and rely on core lab facilities, preventing their use for the regular monitoring. Electrochemical sensors exist as an attractive candidate for point-of-care tool, yet, streamlining multiple processes in a single platform remains a challenge. To overcome this challenge, this work integrated electrochemical sensor arrays into a digital microfluidic device to combine their distinct merits, so that soluble PD-L1 (sPD-L1) molecules can be rapidly detected in a programmed and automated manner. This new platform featured microscale electrochemical sensor arrays modified with electrically conductive 3D matrix, and can detect as low as 1 pg/mL sPD-L1 with high specificity. The sensors also have desired repeatability and can obtain reproducible results on different days. To demonstrate the functionality of the device to process more complex biofluids, we used the device to detect sPD-L1 molecules secreted by human breast cancer cell line in culture media directly and observed 2X increase in signal compared with control experiment. This novel platform holds promise for the close monitoring of sPD-L1 level in human physiological fluids to evaluate the efficacy of PD-1/PD-L1 immunotherapy.

2.
bioRxiv ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39149268

RESUMEN

Cytotoxic T cells produce interferon gamma (IFNγ), which plays a critical role in anti-microbial and anti-tumor responses. However, it is not clear whether T cell-derived IFNγ directly kills infected and tumor target cells, and how this may be regulated. Here, we report that target cell expression of the kinases TBK1 and IKKε regulate IFNγ cytotoxicity by suppressing the ability of T cell-derived IFNγ to kill target cells. In tumor targets lacking TBK1 and IKKε, IFNγ induces expression of TNFR1 and the Z-nucleic acid sensor, ZBP1, to trigger RIPK1-dependent apoptosis, largely in a target cell-autonomous manner. Unexpectedly, IFNγ, which is not known to signal to NFκB, induces hyperactivation of NFκB in TBK1 and IKKε double-deficient cells. TBK1 and IKKε suppress IKKα/ß activity and in their absence, IFNγ induces elevated NFκB-dependent expression of inflammatory chemokines and cytokines. Apoptosis is thought to be non-inflammatory, but our observations demonstrate that IFNγ can induce an inflammatory form of apoptosis, and this is suppressed by TBK1 and IKKε. The two kinases provide a critical connection between innate and adaptive immunological responses by regulating three key responses: (1) phosphorylation of IRF3/7 to induce type I IFN; (2) inhibition of RIPK1-dependent death; and (3) inhibition of NFκB-dependent inflammation. We propose that these kinases evolved these functions such that their inhibition by pathogens attempting to block type I IFN expression would enable IFNγ to trigger apoptosis accompanied by an alternative inflammatory response. Our findings show that loss of TBK1 and IKKε in target cells sensitizes them to inflammatory apoptosis induced by T cell-derived IFNγ.

3.
Sci Rep ; 14(1): 19561, 2024 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174596

RESUMEN

There is a critical need to non-invasively assess the PD-L1 expression in tumors as a predictive biomarker for determining the efficacy of anti-PD-1/PD-L1 immunotherapies. Non-invasive imaging modality like positron emission tomography (PET) can be a powerful tool to assess the PD-L1 expression in the whole body including multiple metastases as a patient selection criterion for the anti-PD-1/PD-L1 immunotherapy. In this study, we synthesized B11-nanobody, B11-scFv and B11-diabody fragments from the full-length anti-PD-L1 B11 IgG. Out of the three antibody fragments, B11-diabody showed higher nM affinity towards PD-L1 antigen as compared to B11-scFv and B11-nanobody. All three antibody fragments were successfully radiolabeled with 64Cu, a PET radioisotope. For radiolabeling, the antibody fragments were first conjugated with p-SCN-Bn-NOTA followed by chelation with 64Cu. All three radiolabeled antibody fragments were found to be stable in mouse and human sera for up to 24 h. Additionally, all three [64Cu]Cu-NOTA-B11-antibody fragments were evaluated in PD-L1 negative and human PD-L1 expressing cancer cells and subcutaneous tumor models. Based on the results, [64Cu]Cu-NOTA-B11-diabody has potential to be used as a PET imaging probe for assessing PD-L1 expression in tumors as early as 4 h post-injection, allowing faster assessment compared to the full length IgG based PET imaging probe.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Mama , Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/inmunología , Animales , Humanos , Femenino , Ratones , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/inmunología , Línea Celular Tumoral , Melanoma/diagnóstico por imagen , Melanoma/inmunología , Melanoma/metabolismo , Anticuerpos de Cadena Única/inmunología , Radioisótopos de Cobre , Fragmentos de Inmunoglobulinas/inmunología
4.
J Hepatol ; 80(6): 892-903, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38458319

RESUMEN

BACKGROUND & AIMS: Cholangiocarcinoma (CCA) is a poorly immunogenic malignancy associated with limited survival. Syngeneic immunocompetent mouse models of CCA are an essential tool to elucidate the tumor immune microenvironment (TIME), understand mechanisms of tumor immune evasion, and test novel immunotherapeutic strategies. The scope of this study was to develop and characterize immunocompetent CCA models with distinct genetic drivers, and correlate tumor genomics, immunobiology, and therapeutic response. METHODS: A multifaceted approach including scRNA-seq, CITE-seq, whole exome and bulk RNA sequencing was employed. FDA-approved PD-1/PD-L1 antibodies were tested in humanized PD-1/PD-L1 mice (HuPD-H1). RESULTS: A genetic mouse model of intrahepatic CCA (iCCA) driven by intrabiliary transduction of Fbxw7ΔF/Akt that mimics human iCCA was generated. From the Fbxw7ΔF/Akt tumors, a murine cell line (FAC) and syngeneic model with genetic and phenotypic characteristics of human iCCA were developed. Established SB1 (YAPS127A/Akt) and KPPC (KrasG12Dp53L/L) models were compared to the FAC model. Although the models had transcriptomic similarities, they had substantial differences as well. Mutation patterns of FAC, SB1, and KPPC cells matched different mutational signatures in Western and Japanese CCA patient cohorts. KPPC tumors had a high tumor mutation burden. FAC tumors had a T cell-infiltrated TIME, while SB1 tumors had a preponderance of suppressive myeloid cells. FAC, SB1, and KPPC tumors matched different immune signatures in human iCCA cohorts. Moreover, FAC, SB1, and KPPC tumor-bearing HuPD-H1 mice displayed differential responses to nivolumab or durvalumab. CONCLUSIONS: Syngeneic iCCA models display a correlation between tumor genotype and TIME phenotype, with differential responses to FDA-approved immunotherapies. This study underscores the importance of leveraging multiple preclinical models to understand responses to immunotherapy in different genetic subsets of human CCA. IMPACT AND IMPLICATIONS: Understanding the relationship between tumor genotype and the phenotype of the immune microenvironment is an unmet need in cholangiocarcinoma (CCA). Herein, we use syngeneic murine models of intrahepatic CCA with different genetic drivers to demonstrate a correlation between tumor genotype and immune microenvironment phenotype in murine models, which is associated with differential responses to FDA-approved immunotherapies. This information will help guide other preclinical studies. Additionally, it emphasizes that immune checkpoint inhibition in patients with CCA is not a "one-size-fits-all" approach. Our observations suggest that, as for targeted therapies, patients should be stratified and selected for treatment according to their tumor genetics.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Modelos Animales de Enfermedad , Microambiente Tumoral , Animales , Colangiocarcinoma/inmunología , Colangiocarcinoma/genética , Ratones , Microambiente Tumoral/inmunología , Humanos , Neoplasias de los Conductos Biliares/inmunología , Neoplasias de los Conductos Biliares/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Línea Celular Tumoral
5.
Nat Commun ; 15(1): 1430, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365756

RESUMEN

Both targeted therapies and immunotherapies provide benefit in resected Stage III melanoma. We hypothesized that the combination of targeted and immunotherapy given prior to therapeutic lymph node dissection (TLND) would be tolerable and drive robust pathologic responses. In NeoACTIVATE (NCT03554083), a Phase II trial, patients with clinically evident resectable Stage III melanoma received either 12 weeks of neoadjuvant vemurafenib, cobimetinib, and atezolizumab (BRAF-mutated, Cohort A, n = 15), or cobimetinib and atezolizumab (BRAF-wild-type, Cohort B, n = 15) followed by TLND and 24 weeks of adjuvant atezolizumab. Here, we report outcomes from the neoadjuvant portion of the trial. Based on intent to treat analysis, pathologic response (≤50% viable tumor) and major pathologic response (complete or near-complete, ≤10% viable tumor) were observed in 86.7% and 66.7% of BRAF-mutated and 53.3% and 33.3% of BRAF-wild-type patients, respectively (primary outcome); these exceeded pre-specified benchmarks of 50% and 30% for major pathologic response. Grade 3 and higher toxicities, primarily dermatologic, occurred in 63% during neoadjuvant treatment (secondary outcome). No surgical delays nor progression to regional unresectability occurred (secondary outcome). Peripheral blood CD8 + TCM cell expansion associated with favorable pathologic responses (exploratory outcome).


Asunto(s)
Anticuerpos Monoclonales Humanizados , Azetidinas , Melanoma , Piperidinas , Neoplasias Cutáneas , Humanos , Melanoma/tratamiento farmacológico , Melanoma/etiología , Vemurafenib/uso terapéutico , Terapia Neoadyuvante , Proteínas Proto-Oncogénicas B-raf/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/etiología , Mutación
6.
Cell Mol Gastroenterol Hepatol ; 17(5): 853-876, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38219900

RESUMEN

BACKGROUND & AIMS: Proapoptotic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling as a cause of cancer cell death is a well-established mechanism. However, TRAIL-receptor (TRAIL-R) agonists have had very limited anticancer activity in human beings, challenging the concept of TRAIL as a potent anticancer agent. Herein, we aimed to define mechanisms by which TRAIL+ cancer cells can leverage noncanonical TRAIL signaling in myeloid-derived suppressor cells (MDSCs) promoting their abundance in murine cholangiocarcinoma (CCA). METHODS: Multiple immunocompetent syngeneic, orthotopic models of CCA were used. Single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing of CD45+ cells in murine tumors from the different CCA models was conducted. RESULTS: In multiple immunocompetent murine models of CCA, implantation of TRAIL+ murine cancer cells into Trail-r-/- mice resulted in a significant reduction in tumor volumes compared with wild-type mice. Tumor-bearing Trail-r-/- mice had a significant decrease in the abundance of MDSCs owing to attenuation of MDSC proliferation. Noncanonical TRAIL signaling with consequent nuclear factor-κB activation in MDSCs facilitated enhanced MDSC proliferation. Single-cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing of immune cells from murine tumors showed enrichment of a nuclear factor-κB activation signature in MDSCs. Moreover, MDSCs were resistant to TRAIL-mediated apoptosis owing to enhanced expression of cellular FLICE inhibitory protein, an inhibitor of proapoptotic TRAIL signaling. Accordingly, cellular FLICE inhibitory protein knockdown sensitized murine MDSCs to TRAIL-mediated apoptosis. Finally, cancer cell-restricted deletion of Trail significantly reduced MDSC abundance and murine tumor burden. CONCLUSIONS: Our findings highlight the therapeutic potential of targeting TRAIL+ cancer cells for treatment of a poorly immunogenic cancer.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Células Supresoras de Origen Mieloide , Humanos , Ratones , Animales , Células Supresoras de Origen Mieloide/metabolismo , FN-kappa B/metabolismo , Ligandos , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Apoptosis , Colangiocarcinoma/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Epítopos
7.
Neuro Oncol ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37941134

RESUMEN

BACKGROUND: Myeloid cells comprise up to 50% of the total tumor mass in glioblastoma (GBM) and have been implicated in promoting tumor progression and immunosuppression. Modulating the response of myeloid cells to the tumor has emerged as a promising new approach for cancer treatment. In this regard, we focus on the Triggering Receptor Expressed on Myeloid cells 2 (TREM2), which has recently emerged as a novel immune modulator in peripheral tumors. METHODS: We studied the TREM2 expression profile in various patient tumor samples and conducted single-cell transcriptomic analysis in both glioblastoma patients and the GL261 mouse glioma model. We utilized multiple mouse glioma models and employed state-of-the-art techniques such as in vivo two-photon imaging, spectrum flow cytometry, and in vitro co-culture assays to study TREM2 function in myeloid cell-mediated phagocytosis of tumor cells, antigen presentation, and response of CD4+ T cells within the tumor hemispheres. RESULTS: Our research revealed significantly elevated levels of TREM2 expression in brain tumors compared to other types of tumors in patients. TREM2 was predominantly localized in tumor-associated myeloid cells and was highly expressed in nearly all microglia, as well as various subtypes of macrophages. Surprisingly, in pre-clinical glioma models, TREM2 deficiency did not confer a beneficial effect; instead, it accelerated glioma progression. Through detailed investigations, we determined that TREM2 deficiency impaired the ability of tumor-myeloid cells to phagocytose tumor cells and led to reduced expression of MHCII. This deficiency further significantly decreased the presence of CD4+ T cells within the tumor hemispheres. CONCLUSIONS: Our study unveiled a previously unrecognized protective role of tumor-myeloid TREM2. Specifically, we found TREM2 enhance the phagocytosis of tumor cells and promote an immune response by facilitating MHCII-associated CD4+ T cell responses against gliomas.

8.
Sci Adv ; 9(46): eadi2414, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37967193

RESUMEN

Patients with advanced cancers who either do not experience initial response to or progress while on immune checkpoint inhibitors (ICIs) receive salvage radiotherapy to reduce tumor burden and tumor-related symptoms. Occasionally, some patients experience substantial global tumor regression with a rebound of cytotoxic CD8+ T cells. We have termed the rebound of cytotoxic CD8+ T cells in response to salvage therapy as T cell resilience and examined the underlying mechanisms of resilience. Resilient T cells are enriched for CX3CR1+ CD8+ T cells with low mitochondrial membrane potential, accumulate less reactive oxygen species (ROS), and express more malic enzyme 1 (ME1). ME1 overexpression enhanced the cytotoxicity and expansion of effector CD8+ T cells partially via the type I interferon pathway. ME1 also increased mitochondrial respiration while maintaining the redox state balance. ME1 increased the cytotoxicity of peripheral lymphocytes from patients with advanced cancers. Thus, preserved resilient T cells in patients rebound after salvage therapy and ME1 enhances their resiliency.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Linfocitos T CD8-positivos , Regulación hacia Arriba , Terapia Recuperativa , Neoplasias/tratamiento farmacológico
9.
Cell Rep ; 42(10): 113224, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37805922

RESUMEN

Macrophages play a pivotal role in tumor immunity. We report that reprogramming of macrophages to tumor-associated macrophages (TAMs) promotes the secretion of exosomes. Mechanistically, increased exosome secretion is driven by MADD, which is phosphorylated by Akt upon TAM induction and activates Rab27a. TAM exosomes carry high levels of programmed death-ligand 1 (PD-L1) and potently suppress the proliferation and function of CD8+ T cells. Analysis of patient melanoma tissues indicates that TAM exosomes contribute significantly to CD8+ T cell suppression. Single-cell RNA sequencing analysis showed that exosome-related genes are highly expressed in macrophages in melanoma; TAM-specific RAB27A expression inversely correlates with CD8+ T cell infiltration. In a murine melanoma model, lipid nanoparticle delivery of small interfering RNAs (siRNAs) targeting macrophage RAB27A led to better T cell activation and sensitized tumors to anti-programmed cell death protein 1 (PD-1) treatment. Our study demonstrates tumors use TAM exosomes to combat CD8 T cells and suggests targeting TAM exosomes as a potential strategy to improve immunotherapies.


Asunto(s)
Exosomas , Melanoma , Humanos , Ratones , Animales , Macrófagos Asociados a Tumores/metabolismo , Linfocitos T CD8-positivos , Regulación hacia Arriba , Exosomas/metabolismo , ARN Interferente Pequeño/metabolismo , Melanoma/metabolismo , Microambiente Tumoral , Línea Celular Tumoral , Antígeno B7-H1/metabolismo
10.
Cancer Discov ; 13(12): 2584-2609, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37676710

RESUMEN

Signaling rewiring allows tumors to survive therapy. Here we show that the decrease of the master regulator microphthalmia transcription factor (MITF) in lethal prostate cancer unleashes eukaryotic initiation factor 3B (eIF3B)-dependent translation reprogramming of key mRNAs conferring resistance to androgen deprivation therapy (ADT) and promoting immune evasion. Mechanistically, MITF represses through direct promoter binding eIF3B, which in turn regulates the translation of specific mRNAs. Genome-wide eIF3B enhanced cross-linking immunoprecipitation sequencing (eCLIP-seq) showed specialized binding to a UC-rich motif present in subsets of 5' untranslated regions. Indeed, translation of the androgen receptor and major histocompatibility complex I (MHC-I) through this motif is sensitive to eIF3B amount. Notably, pharmacologic targeting of eIF3B-dependent translation in preclinical models sensitizes prostate cancer to ADT and anti-PD-1 therapy. These findings uncover a hidden connection between transcriptional and translational rewiring promoting therapy-refractory lethal prostate cancer and provide a druggable mechanism that may transcend into effective combined therapeutic strategies. SIGNIFICANCE: Our study shows that specialized eIF3B-dependent translation of specific mRNAs released upon downregulation of the master transcription factor MITF confers castration resistance and immune evasion in lethal prostate cancer. Pharmacologic targeting of this mechanism delays castration resistance and increases immune-checkpoint efficacy. This article is featured in Selected Articles from This Issue, p. 2489.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Factores de Transcripción , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Evasión Inmune , Receptores Androgénicos/genética , Castración , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología
11.
Urol Oncol ; 41(9): 393.e1-393.e7, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37414595

RESUMEN

INTRODUCTION: Systemic immunotherapy has changed the paradigm of treatment of advanced renal cell carcinoma, but nephrectomy continues to benefit selected patients. While we continue to identify mechanisms behind drug resistance, the effect of surgery on natural anti-tumor immunity is poorly understood. Specifically, peripheral blood mononuclear cell (PBMC) profile and tumor reactive cytotoxic T lymphocytes changes secondary to tumor resection have not been extensively characterized. Hence, we aimed to evaluate the effect of nephrectomy on PMBC profile and circulating antigen-primed CD8+ T-cells for patients undergoing solid renal mass resection. METHODS: Patients with localized or metastatic solid renal masses who underwent nephrectomy from 2016 to 2018 were enrolled. Blood samples were collected at 3 timepoints for PBMCs analysis (pre-op, 1 day, and 3 months post-op). Flow cytometry was used to identify CD11ahigh CD8+ T lymphocytes that were then further characterized according to the expression of CX3CR1/GZMB, Ki67, Bim, and PD-1. Changes in circulating CD8+ T-cells from pre-op to 1 day and 3 months post-op were evaluated using Wilcoxon signed rank tests. RESULTS: Antigen-primed CX3CR1+GZMB+ T-cells significantly increased by 3 months after surgery among patients with RCC (0.8 × 109 cells; P = 0.01). In contrast, there was a decrease in absolute numbers of Bim+ T-cells at 3 months (-1.9 × 109 cells; P = 0.02). There were no significant absolute changes in PD-1+ (-1.4 × 109; P = 0.7) and CD11ahigh CD8+ T lymphocytes (1.3 × 109; P = 0.9). Ki67+ T-cells decreased by 3 months (-0.8 × 109; P < 0.001). CONCLUSIONS: Nephrectomy is associated with an increase in cytolytic antigen-primed CD8+ T-cells and specific PBMC profile changes. Further studies are warranted to ascertain the role surgery may have in the restoration of anti-tumor immunity.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Linfocitos T Citotóxicos , Receptor de Muerte Celular Programada 1/metabolismo , Antígeno Ki-67/metabolismo , Neoplasias Renales/metabolismo , Linfocitos T CD8-positivos/metabolismo , Carcinoma de Células Renales/metabolismo , Linfocitos Infiltrantes de Tumor
12.
iScience ; 26(7): 107197, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37456831

RESUMEN

Alveolar macrophages (AMs) are resident innate immune cells that play vital roles in maintaining lung physiological functions. However, the effects of aging on their dynamics, heterogeneity, and transcriptional profiles remain to be fully elucidated. Through single cell RNA sequencing (scRNA-seq), we identified CBFß as an indispensable transcription factor that ensures AM self-renewal. Intriguingly, despite transcriptome similarities of proliferating cells, AMs from aged mice exhibited reduced embryonic stem cell-like features. Aged AMs also displayed compromised DNA repair abilities, potentially leading to obstructed cell cycle progression and an elevation of senescence markers. Consistently, AMs from aged mice exhibited impaired self-renewal ability and reduced sensitivity to GM-CSF. Decreased CBFß was observed in the cytosol of AMs from aged mice. Similar senescence-like phenotypes were also found in human AMs. Taken together, these findings suggest that AMs in aged hosts demonstrate senescence-like phenotypes, potentially facilitated by the abrogated CBF ß activity.

13.
iScience ; 26(6): 106929, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37260746

RESUMEN

Despite extensive research, the specific factor associated with SARS-CoV-2 infection that mediates the life-threatening inflammatory cytokine response in patients with severe COVID-19 remains unidentified. Herein we demonstrate that the virus-encoded Open Reading Frame 8 (ORF8) protein is abundantly secreted as a glycoprotein in vitro and in symptomatic patients with COVID-19. ORF8 specifically binds to the NOD-like receptor family pyrin domain-containing 3 (NLRP3) in CD14+ monocytes to induce inflammasomal cytokine/chemokine responses including IL1ß, IL8, and CCL2. Levels of ORF8 protein in the blood correlate with severity and disease-specific mortality in patients with acute SARS-CoV-2 infection. Furthermore, the ORF8-induced inflammasome response was readily inhibited by the NLRP3 inhibitor MCC950 in vitro. Our study identifies a dominant cause of pathogenesis, its underlying mechanism, and a potential new treatment strategy for severe COVID-19.

14.
bioRxiv ; 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37293061

RESUMEN

Proapoptotic tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling as a cause of cancer cell death is a well-established mechanism. However, TRAIL-receptor (TRAIL-R) agonists have had very limited anticancer activity in humans, challenging the concept of TRAIL as a potent anticancer agent. Herein, we demonstrate that TRAIL + cancer cells can leverage noncanonical TRAIL signaling in myeloid-derived suppressor cells (MDSCs) promoting their abundance in murine cholangiocarcinoma (CCA). In multiple immunocompetent syngeneic, orthotopic murine models of CCA, implantation of TRAIL + murine cancer cells into Trail-r -/- mice resulted in a significant reduction in tumor volumes compared to wild type mice. Tumor bearing Trail-r -/- mice had a significant decrease in the abundance of MDSCs due to attenuation of MDSC proliferation. Noncanonical TRAIL signaling with consequent NF-κB activation in MDSCs facilitated enhanced MDSC proliferation. Single cell RNA sequencing and cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq) of CD45 + cells in murine tumors from three distinct immunocompetent CCA models demonstrated a significant enrichment of an NF-κB activation signature in MDSCs. Moreover, MDSCs were resistant to TRAIL-mediated apoptosis due to enhanced expression of cellular FLICE inhibitory protein (cFLIP), an inhibitor of proapoptotic TRAIL signaling. Accordingly, cFLIP knockdown sensitized murine MDSCs to TRAIL-mediated apoptosis. Finally, cancer cell-restricted deletion of Trail significantly reduced MDSC abundance and murine tumor burden. In summary, our findings define a noncanonical TRAIL signal in MDSCs and highlight the therapeutic potential of targeting TRAIL + cancer cells for the treatment of a poorly immunogenic cancer.

15.
Sci Rep ; 13(1): 7903, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37193763

RESUMEN

The mechanisms that underlie the timing of labor in humans are largely unknown. In most pregnancies, labor is initiated at term (≥ 37 weeks gestation), but in a signifiicant number of women spontaneous labor occurs preterm and is associated with increased perinatal mortality and morbidity. The objective of this study was to characterize the cells at the maternal-fetal interface (MFI) in term and preterm pregnancies in both the laboring and non-laboring state in Black women, who have among the highest preterm birth rates in the U.S. Using mass cytometry to obtain high-dimensional single-cell resolution, we identified 31 cell populations at the MFI, including 25 immune cell types and six non-immune cell types. Among the immune cells, maternal PD1+ CD8 T cell subsets were less abundant in term laboring compared to term non-laboring women. Among the non-immune cells, PD-L1+ maternal (stromal) and fetal (extravillous trophoblast) cells were less abundant in preterm laboring compared to term laboring women. Consistent with these observations, the expression of CD274, the gene encoding PD-L1, was significantly depressed and less responsive to fetal signaling molecules in cultured mesenchymal stromal cells from the decidua of preterm compared to term women. Overall, these results suggest that the PD1/PD-L1 pathway at the MFI may perturb the delicate balance between immune tolerance and rejection and contribute to the onset of spontaneous preterm labor.


Asunto(s)
Trabajo de Parto , Trabajo de Parto Prematuro , Nacimiento Prematuro , Embarazo , Humanos , Femenino , Recién Nacido , Antígeno B7-H1/genética , Trabajo de Parto Prematuro/metabolismo , Subgrupos de Linfocitos T
16.
J Immunol ; 210(12): 2029-2037, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37163328

RESUMEN

The intrinsic and acquired resistance to PD-1/PD-L1 immune checkpoint blockade is an important challenge for patients and clinicians because no reliable tool has been developed to predict individualized response to immunotherapy. In this study, we demonstrate the translational relevance of an ex vivo functional assay that measures the tumor cell killing ability of patient-derived CD8 T and NK cells (referred to as "cytotoxic lymphocytes," or CLs) isolated from the peripheral blood of patients with renal cell carcinoma. Patient-derived PBMCs were isolated before and after nephrectomy from patients with renal cell carcinoma. We compared the efficacy of U.S. Food and Drug Administration (FDA)-approved PD-1/PD-L1 inhibitors (pembrolizumab, nivolumab, atezolizumab) and a newly developed PD-L1 inhibitor (H1A Ab) in eliciting cytotoxic function. CL activity was improved at 3 mo after radical nephrectomy compared with baseline, and it was associated with higher circulating levels of tumor-reactive effector CD8 T cells (CD11ahighCX3CR1+GZMB+). Treatment of PBMCs with FDA-approved PD-1/PD-L1 inhibitors enhanced tumor cell killing activity of CLs, but a differential response was observed at the individual-patient level. H1A demonstrated superior efficacy in promoting CL activity compared with FDA-approved PD-1/PD-L1 inhibitors. PBMC immunophenotyping by mass cytometry revealed enrichment of effector CD8 T and NK cells in H1A-treated PBMCs and immunosuppressive regulatory T cells in atezolizumab-treated samples. Our study lays the ground for future investigation of the therapeutic value of H1A as a next-generation immune checkpoint inhibitor and the potential of measuring CTL activity in PBMCs as a tool to predict individual response to immune checkpoint inhibitors in patients with advanced renal cell carcinoma.


Asunto(s)
Antineoplásicos , Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Leucocitos Mononucleares , Antineoplásicos/farmacología , Linfocitos T Reguladores , Neoplasias Renales/tratamiento farmacológico , Nefrectomía , Linfocitos T CD8-positivos
17.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066234

RESUMEN

Triggering receptor expressed on myeloid cells 2 (TREM2) was recently highlighted as a novel immune suppressive marker in peripheral tumors. The aim of this study was to characterize TREM2 expression in gliomas and investigate its contribution in glioma progression by using Trem2-/- mouse line. Our results showed that higher TREM2 expression was correlated with poor prognosis in glioma patients. Unexpectedly, TREM2 deficiency did not have a beneficial effect in a pre-clinical model of glioma. The increased TREM2 expression in glioma was likely due to increased myeloid cell infiltration, as evidenced by our single-cell analysis showing that almost all microglia and macrophages in gliomas were TREM2+. Furthermore, we found that deficiency of TREM2 impaired tumor-myeloid phagocytosis and MHCII presentation, and significantly reduced CD4+ T cells in tumor hemispheres. Our results revealed a previously unrecognized protective role of tumor-myeloid TREM2 in promoting MHCII-associated CD4+ T cell response against gliomas.

18.
Kidney Int Rep ; 8(3): 628-641, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36938084

RESUMEN

Introduction: Immune checkpoint inhibitors (ICIs) induce impressive antitumor responses but may lead to acute kidney injury (AKI) associated with ICI therapy (AKI-ICI). Biomarkers distinguishing AKI-ICI from AKI because of other causes (AKI-other) are currently lacking. Because ICIs block immunoregulatory pathways, we hypothesized that biomarkers related to immune cell dysregulation, including tumor necrosis factor alpha (TNF-α) and other markers of B and T cell activation in the systemic circulation and kidney tissue, may aid with the diagnosis of AKI-ICI. Methods: This is a prospective study consisting of 24 participants who presented with AKI during ICI therapy, adjudicated to either have AKI-ICI (n = 14) or AKI-other (n = 10). We compared markers of kidney inflammation and injury (neutrophil gelatinase-associated lipocalin, kidney injury molecule-1) as well as plasma and urine levels of T cell-associated cytokines (TNF-α, interferon-γ, interleukin (IL)-2, IL-4, IL-6, IL-8, IL-9, and IL-10) between groups. We also compared T-cell responses in the systemic circulation and in kidney tissue across groups, using mass cytometry systems. Results: We observed increase in several specific immune cells, including CD4 memory, T helper cells, and dendritic cells in the kidney tissue, as well as in the urine cytokines IL-2, IL-10, and TNF-α, in patients who developed AKI-ICI compared to patients with AKI-other (P < 0.05 for all). The discriminatory ability of TNF-α on AKI cause was strong (area under the curve = 0.814, 95% confidence interval: 0.623-1.00. The CD4+ T cells with memory phenotype formed the dominant subset. Conclusion: These results suggest that specific T-cell responses and their respective cytokines may be indicative of AKI associated with ICI therapy and may help to differentiate AKI-ICI from AKI-other. Urine TNF-α is a promising biomarker for AKI-ICI, which is most often caused by acute interstitial nephritis (AIN), and TNF-α pathway may serve as a potential target for therapeutic intervention.

19.
Immunohorizons ; 7(1): 125-139, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656137

RESUMEN

Seven different anti-PD-1 and PD-L1 mAbs are now widely used in the United States to treat a variety of cancer types, but no clinical trials have compared them directly. Furthermore, because many of these Abs do not cross-react between mouse and human proteins, no preclinical models exist in which to consider these types of questions. Thus, we produced humanized PD-1 and PD-L1 mice in which the extracellular domains of both mouse PD-1 and PD-L1 were replaced with the corresponding human sequences. Using this new model, we sought to compare the strength of the immune response generated by Food and Drug Administration-approved Abs. To do this, we performed an in vivo T cell priming assay in which anti-PD-1/L1 therapies were given at the time of T cell priming against surrogate tumor Ag (OVA), followed by subsequent B16-OVA tumor challenge. Surprisingly, both control and Ab-treated mice formed an equally robust OVA-specific T cell response at the time of priming. Despite this, anti-PD-1/L1-treated mice exhibited significantly better tumor rejection versus controls, with avelumab generating the best protection. To determine what could be mediating this, we identified the increased production of CX3CR1+PD-1+CD8+ cytotoxic T cells in the avelumab-treated mice, the same phenotype of effector T cells known to increase in clinical responders to PD-1/L1 therapy. Thus, our model permits the direct comparison of Food and Drug Administration-approved anti-PD-1/L1 mAbs and further correlates successful tumor rejection with the level of CX3CR1+PD-1+CD8 + T cells, making this model a critical tool for optimizing and better utilizing anti-PD-1/L1 therapeutics.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Animales , Humanos , Ratones , Anticuerpos Monoclonales , Modelos Animales de Enfermedad , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Linfocitos T Citotóxicos , Estados Unidos , United States Food and Drug Administration , Receptor de Muerte Celular Programada 1
20.
Int J Hematol ; 117(5): 634-639, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35864292

RESUMEN

Although cancer burden in patients with advanced disease results in many failed prior therapies, some patients still achieve durable responses to immunotherapy implying that remnant and resilient cytotoxic T cells are present in these responders. Since patients with more resilient T cells are likely to benefit from immunotherapy, it will be important to determine how resilient T cells in patients can be identified and to define the mechanisms by which tumor-reactive resilient T cells can be generated. In this review, we summarized recent advances in research on resilient T cells in patients with advanced cancers and proposed future research directions. From there, we expect to leverage this knowledge to generate or expand the resilient T cells in patients who do not respond to initial immunotherapy and convert them into responders.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Linfocitos T Citotóxicos , Inmunoterapia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...