Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Small ; : e2308565, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38339770

RESUMEN

Cuproptosis is an emerging programmed cell death, displaying great potential in cancer treatment. However, intracellular copper content to induce cuproptosis is unmet, which mainly ascribes to the intracellular pumping out equilibrium mechanism by copper exporter ATP7A and ATP7B. Therefore, it is necessary to break such export balance mechanisms for desired cuproptosis. Mediated by diethyldithiocarbamate (DTC) coordination, herein a strategy to efficiently assemble copper ions into polydopamine nanostructure (PDA-DTC/Cu) for reprogramming copper metabolism of tumor is developed. The deposited Cu2+ can effectively trigger the aggregation of lipoylated proteins to induce cuproptosis of tumor cells. Beyond elevating intracellular copper accumulation, PDA-DTC/Cu enables to break the balance of copper metabolism by disrupting mitochondrial function and restricting the adenosine triphosphate (ATP) energy supply, thus catalytically inhibiting the expressions of ATP7A and ATP7B of tumor cells to enhance cuproptosis. Meanwhile, the killed tumor cells can induce immunogenic cell death (ICD) to stimulate the immune response. Besides, PDA-DTC/Cu NPs can promote the repolarization of tumor-associated macrophages (TAMs ) to relieve the tumor immunosuppressive microenvironment (TIME). Collectively, PDA-DTC/Cu presented a promising "one stone two birds" strategy to realize copper accumulation and inhibit copper export simultaneously to enhance cuproptosis for 4T1 murine breast cancer immunotherapy.

2.
ACS Appl Mater Interfaces ; 16(8): 9640-9655, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38364050

RESUMEN

The successful treatment of diabetic wounds requires strategies that promote anti-inflammation, angiogenesis, and re-epithelialization of the wound. Excessive oxidative stress in diabetic ulcers (DUs) inhibits cell proliferation and hinders timely vascular formation and macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2, resulting in a persistent inflammatory environment and a nonhealing wound. We designed arginine-nanoenzyme (FTA) with mimic-catalase and arginine-loading. 2,3,4-trihydroxy benzaldehyde and arginine (Arg) were connected by a Schiff base bond, and the nanoassembly of Arg to FTA was driven by the coordination force between a ferric ion and polyphenol and noncovalent bond force such as a hydrogen bond. FTA could remove excess reactive oxygen species at the wound site in situ and convert it to oxygen to improve hypoxia. Meanwhile, Arg was released and catalytically metabolized by NO synthase in M1 to promote vascular repair in the early phase. In the late phase, the metabolite of Arg catalyzed by arginase in M2 was mainly ornithine, which played a vital role in promoting tissue repair, which implemented angiogenesis timely and prevented hypertrophic scars. Mechanistically, FTA activated the cAMP signaling pathway combined with reducing inflammation and ameliorating angiogenesis, which resulted in excellent therapeutic effects on a DU mice model.


Asunto(s)
Arginina , Diabetes Mellitus Experimental , Ratones , Animales , Arginina/farmacología , Arginina/uso terapéutico , Angiogénesis , Diabetes Mellitus Experimental/tratamiento farmacológico , Cicatrización de Heridas , Repitelización
3.
Biomaterials ; 306: 122474, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38271788

RESUMEN

Repolarizing the tumor-associated macrophages (TAMs) towards the antitumoral M1-like phenotype has been a promising approach for cancer immunotherapy. However, the anti-cancer immune response is severely limited mainly by the repolarized M1-like macrophages belatedly returning to the M2-like phenotype (i.e., negative feedback). Inspired by nitric oxide (NO) effectively preventing repolarization of inflammatory macrophages in inflammatory diseases, herein, we develop an arginine assembly, as NO nano-donor for NO generation to prevent the negative feedback of the macrophage repolarization. The strategy is to first apply reversible tagging of hydrophobic terephthalaldehyde to create an arginine nano-assembly, and then load a toll-like receptor 7/8 agonist resiquimod (R848) (R848@Arg). Through this strategy, a high loading efficiency of 40 % for the arginine and repolarization characteristics for TAMs can be achieved. Upon the macrophage repolarization by R848, NO can be intracellularly generated from the released arginine by the upregulated inducible nitric oxide synthase. Mechanistically, NO effectively prevented the negative feedback of the repolarized macrophage by mitochondrial dysfunction via blocking oxidative phosphorylation. Notably, R848@Arg significantly increased the tumor inhibition ratio by 3.13-fold as compared to the free R848 by maintaining the M1-like phenotype infiltrating into tumor. The Arg-assembly as NO nano-donor provides a promising method for effective repolarization of macrophages.


Asunto(s)
Enfermedades Mitocondriales , Neoplasias , Humanos , Donantes de Óxido Nítrico , Retroalimentación , Macrófagos , Neoplasias/patología , Adyuvantes Inmunológicos/farmacología , Óxido Nítrico/farmacología , Inmunoterapia/métodos , Enfermedades Mitocondriales/patología , Microambiente Tumoral
4.
Bioresour Technol ; 395: 130367, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266788

RESUMEN

The impact and mechanism of fluoranthene (Flr), a typical polycyclic aromatic hydrocarbon highly detected in sludge, on alkaline fermentation for volatile fatty acids (VFAs) recovery and antibiotic resistance genes (ARGs) transfer were studied. The results demonstrated that VFAs production increased from 2189 to 4272 mg COD/L with a simultaneous reduction of ARGs with Flr. The hydrolytic enzymes and genes related to glucose and amino acid metabolism were provoked. Also, Flr benefited for the enrichment of hydrolytic-acidifying consortia (i.e., Parabacteroides and Alkalibaculum) while reduced VFAs consumers (i.e., Rubrivivax) and ARGs potential hosts (i.e., Rubrivivax and Pseudomonas). Metagenomic analysis indicated that the genes related to cell wall synthesis, biofilm formation and substrate transporters to maintain high VFAs-producer activities were upregulated. Moreover, cell functions of efflux pump and Type IV secretion system were suppressed to inhibit ARGs proliferation. This study provided intrinsic mechanisms of Flr-induced VFAs promotion and ARGs reduction during alkaline fermentation.


Asunto(s)
Antibacterianos , Fluorenos , Aguas del Alcantarillado , Fermentación , Aguas del Alcantarillado/química , Consorcios Microbianos , Ácidos Grasos Volátiles , Farmacorresistencia Microbiana , Concentración de Iones de Hidrógeno
5.
J Am Chem Soc ; 146(5): 3186-3199, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38266487

RESUMEN

Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disease that carries a significant global economic burden. Elevated levels of reactive oxygen species (ROS) have been recognized as contributing to AD exacerbation, making them a potential therapeutic target for AD treatment. Here, we introduce a dual-site biomimetic copper/zinc metal-organic framework (Cu/Zn-MOF) featuring four types of enzyme-like activities for AD treatment via suppressing the Fcγ receptor (FcγR)-mediated phagocytosis signal by mimicking the bimetallic sites of natural copper-zinc superoxide dismutase (CuZn-SOD). Interestingly, the neighboring Cu and Zn sites in both Cu/Zn-MOF and CuZn-SOD are at similar distances of ∼5.98 and ∼6.3 Šfrom each other, respectively, and additionally, both Cu and Zn sites are coordinated to nitrogen atoms in both structures, and the coordinating ligands to Cu and Zn are both imidazole rings. Cu/Zn-MOF exhibits remarkable SOD-like activity as well as its glutathione peroxidase (GPx)-, thiol peroxidase (TPx)-, and ascorbate peroxidase (APx)-like activities to continuously consume ROS and mitigate oxidative stress in keratinocytes. Animal experiments show that Cu/Zn-MOF outperforms halcinonide solution (a potent steroid medication) in terms of preventing mechanical injuries, reducing cutaneous water loss, and inhibiting inflammatory responses while presenting favorable biosafety. Mechanistically, Cu/Zn-MOF functions through an FcγR-mediated phagocytosis signal pathway, decreasing the continuous accumulation of ROS in AD and ultimately suppressing disease progression. These findings will provide an effective paradigm for AD therapy and contribute to the development of two-site bionics (TSB).


Asunto(s)
Dermatitis Atópica , Estructuras Metalorgánicas , Humanos , Animales , Superóxido Dismutasa/metabolismo , Cobre , Receptores de IgG , Zinc/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Biomimética , Glutatión Peroxidasa/metabolismo
6.
Adv Healthc Mater ; : e2302387, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37975271

RESUMEN

Macrophages, capable of both direct killing and antigen presentation, are crucial for the interplay between innate and adaptive immunity. However, strategies mainly focus on polarizing tumor-associated macrophages (TAMs) to M1 phenotype, while overlooking the inefficient antigen cross-presentation due to hyperactive hydrolytic protease within lysosomes which leads to antigen degradation. In light of the significant influence of reactive oxygen species (ROS) on TAMs' polarization and the inhibition of phagosomal proteolysis, a novel nanosystem termed OVA-Fe-GA (OFG) is engineered, drawing inspiration from the NOX2 enzyme's role. OFG integrates ovalbumin (OVA) and a network composed of Fe-gallic acid (GA), emulating the NOX2 enzyme's sequential ROS generation process ("O2 to O2 •- to H2 O2 /•OH"). Furthermore, it elucidates a biological mechanism that augments antigen cross-presentation by suppressing the expression of cysteine proteases. OFG restores the innate anti-tumor functionality of TAMs and significantly amplifies their antigen cross-presentation (4.5-fold compared to the PBS control group) in B16-OVA tumor-bearing mice. Notably, the infiltration and activity of intratumoral CD8+ T cells are enhanced, indicating an adaptive immune response. Moreover, OFG exhibits excellent photothermal properties, thereby fostering a system antitumor immune response. This study provides a promising strategy for initiating both innate and adaptive immunity via TAMs activation. This article is protected by copyright. All rights reserved.

7.
Nat Commun ; 14(1): 6767, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880231

RESUMEN

Psoriasis is a common inflammatory disease of especially high recurrence rate (90%) which is suffered by approximately 3% of the world population. The overexpression of reactive oxygen species (ROS) plays a critical role in psoriasis progress. Here we show that biomimetic iron single-atom catalysts (FeN4O2-SACs) with broad-spectrum ROS scavenging capability can be used for psoriasis treatment and relapse prevention via related gene restoration. FeN4O2-SACs demonstrate attractive multiple enzyme-mimicking activities based on atomically dispersed Fe active structures, which are analogous to those of natural antioxidant enzymes, iron superoxide dismutase, human erythrocyte catalase, and ascorbate peroxidase. Further, in vitro and in vivo experiments show that FeN4O2-SACs can effectively ameliorate psoriasis-like symptoms and prevent the relapse with augmented efficacy compared with the clinical drug calcipotriol. Mechanistically, estrogen receptor 1 (ESR1) is identified as the core protein upregulated in psoriasis treatment through RNA sequencing and bioinformatic analysis. Together, this study provides a proof of concept of psoriasis catalytic therapy (PCT) and multienzyme-inspired bionics (MIB).


Asunto(s)
Receptor alfa de Estrógeno , Psoriasis , Humanos , Especies Reactivas de Oxígeno/metabolismo , Prevención Secundaria , Superóxido Dismutasa/metabolismo , Psoriasis/tratamiento farmacológico , Psoriasis/metabolismo
8.
J Nanobiotechnology ; 21(1): 227, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37461079

RESUMEN

Myocardial infarction (MI) resulting from coronary artery occlusion is the leading global cause of cardiovascular disability and mortality. Anti-inflammatory treatment plays an important role in MI treatment. Triptolide (TPL), as a Chinese medicine monomer, has a variety of biological functions, including anti-inflammatory, anti-tumor, and immunoregulation. However, it has been proved that TPL is poorly water soluble, and has clear hepatotoxicity and nephrotoxicity, which seriously limits its clinical application. Herein, we designed a long-acting hydrogel platform (TPL@PLGA@F127) for MI treatment by intramyocardial injection. First, we found that the inflammatory response and immune regulation might be the main mechanisms of TPL against MI by network pharmacology. Subsequently, we prepared the hydrogel platform (TPL@PLGA@F127) and tested its effects and toxicity on normal organs in the early stage of MI (3 days after MI-operation). The results showed that TPL@PLGA@F127 could not only promote "repair" macrophages polarization (to M2 macrophage) by day 3 after MI, but also has a long-lasting anti-inflammatory effect in the later stage of MI (28 days after MI-operation). Additionally, we proved that TPL@PLGA@F127 could attenuate the toxicity of TPL by releasing it more slowly and stably. Finally, we observed the long-term effects of TPL@PLGA@F127 on MI and found that it could improve cardiac function, depress the myocardial fibrosis and protect the cardiomyocytes. In summary, this study indicated that TPL@PLGA@F127 could not only enhance the therapeutic effects of TPL on MI, but also attenuate the hepatotoxicity and nephrotoxicity, which established a strong foundation for the clinical application of TPL for MI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Infarto del Miocardio , Humanos , Hidrogeles/farmacología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Miocitos Cardíacos
10.
J Nanobiotechnology ; 21(1): 120, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37024939

RESUMEN

Antigen self-assembly nanovaccines advance the minimalist design of therapeutic cancer vaccines, but the issue of inefficient cross-presentation has not yet been fully addressed. Herein, we report a unique approach by combining the concepts of "antigen multi-copy display" and "calcium carbonate (CaCO3) biomineralization" to increase cross-presentation. Based on this strategy, we successfully construct sub-100 nm biomineralized antigen nanosponges (BANSs) with high CaCO3 loading (38.13 wt%) and antigen density (61.87%). BANSs can be effectively uptaken by immature antigen-presenting cells (APCs) in the lymph node upon subcutaneous injection. Achieving efficient spatiotemporal coordination of antigen cross-presentation and immune effects, BANSs induce the production of CD4+ T helper cells and cytotoxic T lymphocytes, resulting in effective tumor growth inhibition. BANSs combined with anti-PD-1 antibodies synergistically enhance anti-tumor immunity and reverse the tumor immunosuppressive microenvironment. Overall, this CaCO3 powder-mediated biomineralization of antigen nanosponges offer a robust and safe strategy for cancer immunotherapy.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Polvos , Linfocitos T CD8-positivos , Biomineralización , Células Presentadoras de Antígenos , Neoplasias/tratamiento farmacológico , Vacunas contra el Cáncer/uso terapéutico , Inmunoterapia/métodos , Microambiente Tumoral
11.
J Mater Chem B ; 11(6): 1171-1190, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36650960

RESUMEN

Apoptosis-based treatment plays an important role in regulating the death of tumor cells (e.g., chemotherapy, radiotherapy, and immunotherapy). Nevertheless, cancer cells can escape surveillance from apoptosis-associated signaling by bypassing other biological pathways and thus result in considerable resistance to therapies. Significantly, ferroptosis, a newly identified type of regulated cell death that is characterized by iron-dependent and lipid peroxidation accumulation, has aroused great research interest in cancer therapy. Increasing approaches have been developed to induce ferroptosis of tumor cells, including using clinically approved drugs, experimentally used compounds, and nanomedicine formulations. More importantly, the emerging nanomedicine-based strategy has made great advances in tumor treatment because of the promising targeting efficacy and enhanced therapeutic effects. In this review, we mainly overview state-of-the-art research on nanomedicine-mediated ferroptosis targeting strategies for synergistic cancer therapies, such as immunotherapy, chemotherapy, radiotherapy, and photothermal therapy. The potential targeting mechanism of nanomedicine for ferroptosis induction was also included. Finally, the future development of nanomedicine in the field of ferroptosis-based cell death in tumor treatment will be envisioned, aiming to provide new insight for tumor treatment in the clinic.


Asunto(s)
Ferroptosis , Neoplasias , Nanomedicina , Inmunoterapia , Apoptosis , Muerte Celular , Neoplasias/tratamiento farmacológico
12.
Adv Healthc Mater ; 12(11): e2202695, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36622285

RESUMEN

Methionine metabolism has a significant impact on T cells' survival and activation even in comparison to arginine, a well-documented amino acid in metabolic therapy. However, hydrophilic methionine is hardly delivered into TME due to difficult loading and rapid diffusion. Herein, the labeling assembly of methionine into nanoparticle is developed to overcome high hydrophilicity for mild-heat mediated immunometabolic therapy. The strategy is to first label methionine with protocatechualdehyde (as the tag) via reversible Schiff-base bond, and then drive nanoassembly of methionine (MPC@Fe) mediated by iron ions. In this fashion, a loading efficiency of 40% and assembly induced photothermal characteristics can be achieved. MPC@Fe can accumulate persistently in tumor up to 36 h due to tumor-selective aggregation in acidic TME. A mild heat of 43 °C on tumor by light irradiation stimulated the immunogenic cell death and effectively generated CD8+ T cells. Notably, MPC@Fe assisted by mild heat promoted 4.2-fold of tumor-infiltrating INF-γ+ CD8+ T cells, leading to an inhibition ratio of 27.3-fold versus the free methionine. Such labeling assembly provides a promising methionine delivery platform to realize mild heat mediated immunometabolic therapy, and is potentially extensible to other amino acids.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Metionina , Calor , Linfocitos T CD8-positivos , Nanopartículas/química , Racemetionina , Aminoácidos , Línea Celular Tumoral
13.
Adv Sci (Weinh) ; 10(2): e2203308, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36424137

RESUMEN

Diabetic foot ulcers (DFU), one of the most serious complications of diabetes, are essentially chronic, nonhealing wounds caused by diabetic neuropathy, vascular disease, and bacterial infection. Given its pathogenesis, the DFU microenvironment is rather complicated and characterized by hyperglycemia, ischemia, hypoxia, hyperinflammation, and persistent infection. However, the current clinical therapies for DFU are dissatisfactory, which drives researchers to turn attention to advanced nanotechnology to address DFU therapeutic bottlenecks. In the last decade, a large number of multifunctional nanosystems based on the microenvironment of DFU have been developed with positive effects in DFU therapy, forming a novel concept of "DFU nanomedicine". However, a systematic overview of DFU nanomedicine is still unavailable in the literature. This review summarizes the microenvironmental characteristics of DFU, presents the main progress of wound healing, and summaries the state-of-the-art therapeutic strategies for DFU. Furthermore, the main challenges and future perspectives in this field are discussed and prospected, aiming to fuel and foster the development of DFU nanomedicines successfully.


Asunto(s)
Microambiente Celular , Pie Diabético , Nanomedicina , Humanos , Diabetes Mellitus , Pie Diabético/tratamiento farmacológico , Pie Diabético/fisiopatología , Hiperglucemia , Cicatrización de Heridas , Microambiente Celular/fisiología
14.
Biomaterials ; 292: 121938, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493715

RESUMEN

L-arginine metabolism is essential for the activation, survival, and effector function of the T lymphocytes and critical in eliminating tumors via T-cell-mediated immunotherapy, such as immune checkpoint blockade (ICB). Unfortunately, efficient delivery of hydrophilic L-arginine to the tumor microenvironment (TME) has met tremendous difficulties because of the limited loading efficacy and rapid diffusion. Inspired by the small-molecule prodrug nanoassemblies with ultrahigh drug-loading, we screen out aromatic aldehydes compounds to be used as dynamic tags to decorate L-arginine (reversible imine). Nano-Arginine (ArgNP, 104 nm) was created based on dynamic tag-mediated self-assembly. Molecular dynamics simulations indicate that the driving force of this self-assembly process is intermolecular hydrogen bonds, π-π stacking, and cation-π interactions. Notably, ArgNP metabolic synergy with anti-PD-L1 antibody (aPDL1) can promote tumor-infiltrating T cells (3.3-fold than aPDL1), resulting in a tumor inhibition ratio of 2.6-fold than aPDL1. Besides, such a strategy efficiently reduces the myeloid-derived suppressor cells, increases the M1-macrophages against the tumor, and induces the production of memory T cells. Furthermore, this synergistic therapy effectively restrains lung metastasis and prolongs mouse survival (60% survival ratio). The study highlights the dynamic tags strategy with facility and advance to deliver L-arginine that can metabolically promote ICB therapy.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Ratones , Animales , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Arginina , Microambiente Tumoral , Inmunoterapia , Neoplasias/terapia , Línea Celular Tumoral
15.
J Nanobiotechnology ; 20(1): 544, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577992

RESUMEN

Hypoxia and high accumulation of lactic acid in the tumor microenvironment provide fertile soil for tumor development, maintenance and metastasis. Herein, we developed a calcium peroxide (CaO2)-loaded nanostructure that can play a role of "one stone kill two birds", i.e., acidic and hypoxic tumor microenvironment can be simultaneously regulated by CaO2 loaded nanostructure. Specifically, CaO2-loaded mesoporous polydopamine nanoparticles modified with sodium hyaluronate (denoted as CaO2@mPDA-SH) can gradually accumulate in a tumor site. CaO2 exposed in acidic microenvironment can succeed in consuming the lactic acid with oxygen generation simultaneously, which could remodel the acid and hypoxia tumor microenvironment. More importantly, the relief of hypoxia could further reduce lactate production from the source by down-regulating the hypoxia inducible factor-1α (HIF-1α), which further down-regulated the glycolysis associated enzymes including glycolysis-related glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA). As a result, CaO2@mPDA-SH alone without the employment of other therapeutics can dually regulate the tumor hypoxia and lactic acid metabolism, which efficiently represses tumor progression in promoting immune activation, antitumor metastasis, and anti-angiogenesis.


Asunto(s)
Nanopartículas , Microambiente Tumoral , Humanos , Línea Celular Tumoral , Hipoxia , Nanopartículas/química , Ácido Láctico/metabolismo
16.
Pak J Med Sci ; 38(7): 1796-1801, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246717

RESUMEN

Objectives: To compare the clinical efficacy of robot of stereotactic assistant (ROSA) and frame-assisted stereotactic drilling and drainage for intracerebral hematoma in hypertensive intracerebral hemorrhage (HICH). Methods: A total of 142 patients with HICH treated in Baoding First Central Hospital from January 2018 to January 2020 were selected and divided into two groups using a random number table. The ROSA group was treated with a robot of stereotactic assistant, while the frame group underwent frame-assisted stereotactic drilling and drainage for intracerebral hematoma. Surgical duration, postoperative extubation time and complications were compared between the two groups. Venous blood (5 mL) was collected before and three days after surgery. The levels of inflammatory factors [tumor necrosis factor-α (TNF-α), high-sensitivity C-reactive protein (hs-CRP) and interleukin-6 (IL-6)], as well as neurological function indexes [neuron-specific enolase (NSE), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF)] were detected by enzyme-linked immunosorbent assay. Results: The surgical duration, postoperative extubation time, and incidences of infection and postoperative rehemorrhage in the ROSA group were lower than those in the frame group (P < 0.05). In the ROSA group, postoperative TNF-α, hs-CRP, IL-6 and NSE levels were significantly lower while NGF and BDNF levels were higher than those in the frame group (all P < 0.05). Conclusion: Compared with frame-assisted stereotactic drilling and drainage for intracerebral hematoma, ROSA in HICH treatment shortens the surgical duration and postoperative extubation time, reduces the risks of infection and rehemorrhage and decreases inflammatory level, which is helpful for the recovery of neurological function.

17.
Front Immunol ; 13: 843684, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651617

RESUMEN

Background: Candida albicans infections are particularly prevalent in immunocompromised patients. Even with appropriate treatment with current antifungal drugs, the mortality rate of invasive candidiasis remains high. Many positive results have been achieved in the current vaccine development. There are also issues such as the vaccine's protective effect is not persistent. Considering the functionality and cost of the vaccine, it is important to develop safe and efficient new vaccines with long-term effects. In this paper, an antifungal nanovaccine with Polyethyleneimine (PEI) as adjuvant was constructed, which could elicit more effective and long-term immunity via stimulating B cells to differentiate into long-lived plasma cells. Materials and Methods: Hsp90-CTD is an important target for protective antibodies during disseminated candidiasis. Hsp90-CTD was used as the antigen, then introduced SDS to "charge" the protein and added PEI to form the nanovaccine. Dynamic light scattering and transmission electron microscope were conducted to identify the size distribution, zeta potential, and morphology of nanovaccine. The antibody titers in mice immunized with the nanovaccine were measured by ELISA. The activation and maturation of long-lived plasma cells in bone marrow by nanovaccine were also investigated via flow cytometry. Finally, the kidney of mice infected with Candida albicans was stained with H&E and PAS to evaluate the protective effect of antibody in serum produced by immunized mice. Results: Nanoparticles (NP) formed by Hsp90-CTD and PEI are small, uniform, and stable. NP had an average size of 116.2 nm with a PDI of 0.13. After immunizing mice with the nanovaccine, it was found that the nano-group produced antibodies faster and for a longer time. After 12 months of immunization, mice still had high and low levels of antibodies in their bodies. Results showed that the nanovaccine could promote the differentiation of B cells into long-lived plasma cells and maintain the long-term existence of antibodies in vivo. After immunization, the antibodies in mice could protect the mice infected by C. albicans. Conclusion: As an adjuvant, PEI can promote the differentiation of B cells into long-lived plasma cells to maintain long-term antibodies in vivo. This strategy can be adapted for the future design of vaccines.


Asunto(s)
Polietileneimina , Vacunas , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Animales , Antifúngicos/farmacología , Candida albicans , Candidiasis , Humanos , Ratones
18.
Artículo en Inglés | MEDLINE | ID: mdl-35578899

RESUMEN

Lactate accumulation in the solid tumor is highly relevant to the immunosuppressive tumor microenvironment (TME). Targeting lactate metabolism significantly enhances the efficacy of immunotherapy. However, lactate depletion by lactate oxidase (LOX) consumes oxygen and results in the aggravated hypoxia situation, counteracting the benefit of lactate depletion. Beyond the TME regulation, it is necessary to initiate the effective immunity cycle for therapeutic purposes. In this fashion, dual close-loop of catalyzed lactate depletion and immune response by a rational material design are established to address this issue. Here, we constructed PEG-modified mesoporous polydopamine nanoparticles with Cu2+ chelation and LOX encapsulation (denoted as mCuLP). After mCuLP nanosystems targeting into the tumor sites, released LOX consumes lactate to H2O2. Subsequently, the produced H2O2 is further catalyzed by Cu2+-chelated mPDA to produce oxygen, supplying the oxygen source for the closed-loop of lactate depletion. Meanwhile, the mild PTT caused by the photothermal mPDA induces ICD of tumor cells to promote DC maturation and then T lymphocyte infiltration to kill tumor cells, which forms another closed-loop for cancer immunity. Therefore, this dual closed-loop strategy of mCuLP nanosystems effectively inhibits tumor growth, providing a promising treatment modality to cancer immunotherapy.

19.
Biomaterials ; 284: 121516, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35436740

RESUMEN

Tumor hyaluronan (HA) accumulation is closely associated with the formation of a hypoxic microenvironment that is highly immunosuppressive and severely hinders the efficacy of antitumor therapeutics. To address this problem, we develop an effective HA attenuation strategy that uses an integrated nanosystem based on mesoporous polydopamine (mPDA) with excellent photothermal conversion efficiency to boost hyaluronidase (HAase) activity remotely. Upon light irradiation, the thermal effect generated by mPDA not only directly kills tumor cells that produces an in situ vaccine effect, but also significantly boosts HAase activity (∼5 folds), leading to marked HA break down. Photoheat and HA degradation synergistically reduce tumor HIF-1α expression and reverse immunosuppressive responses. Using the synergistic treatment in a breast cancer model, we find decreased infiltration of immunosuppressive cells, including myeloid-derived suppressor cells, M2 macrophages, and regulatory T cells, increased immune-activated cells, such as mature dendritic cells and CD8+ T cells, and reduced immune checkpoint PD-L1 expression. The resulting relief from tumor microenvironment immunosuppression significantly contributes to an enhanced antitumor effect. This study provides an effective strategy to improve the hypoxic tumor microenvironment and simultaneously promote immune-mediated tumor regression.


Asunto(s)
Neoplasias , Microambiente Tumoral , Linfocitos T CD8-positivos , Línea Celular Tumoral , Humanos , Hialuronoglucosaminidasa , Inmunoterapia/métodos
20.
Pharmaceutics ; 14(4)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35456568

RESUMEN

In cancer immunotherapy, immune cells are the main force for tumor eradication. However, they appear to be dysfunctional due to the taming of the tumor immunosuppressive microenvironment. Recently, many materials-engineered strategies are proposed to enhance the anti-tumor effect of immune cells. These strategies either utilize biomimetic materials, as building blocks to construct inanimate entities whose functions are similar to natural living cells, or engineer immune cells with functional materials, to potentiate their anti-tumor effects. In this review, we will summarize these advanced strategies in different cell types, as well as discussing the prospects of this field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA