Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Chem Toxicol ; 193: 115003, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39353481

RESUMEN

BACKGROUND AND OBJECTIVE: This study focuses on investigating the role of CDKN1A in cisplatin-induced AKI (acute kidney injury, AKI) and its potential as a biomarker for early diagnosis and therapeutic intervention by integrating bioinformatics analysis, machine learning, and experimental validation. METHODS: We analyzed the GSE85957 dataset to find genes that changed between control and cisplatin-treated rats. Using bioinformatics and machine learning, we found 13 important genes related to ferroptosis and the P53 pathway. The key gene, CDKN1A, was identified using various algorithms. We then tested how reducing CDKN1A in human kidney cells affected cell health, ROS, and iron levels. We also checked how CDKN1A changes the levels of proteins linked to ferroptosis using Q-PCR and Western Blot. RESULTS: CDKN1A was found to negatively regulate the G1/S phase transition and was associated with ferroptosis in p53 signaling. Experiments in human renal tubular epithelial cells (HK-2) and rat NRK-52E cells showed that CDKN1A knockdown mitigated cisplatin-induced cell injury by reducing oxidative stress and ferroptosis. CONCLUSION: Our integrated approach identified CDKN1A as a biomarker for cisplatin-induced AKI. Its regulation could be key in AKI pathogenesis, offering new therapeutic insights and aiding in early diagnosis and intervention.

2.
Clin Transl Immunology ; 13(10): e70007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39416768

RESUMEN

Objectives: CD8+ T cells play a critical role in the immune dysfunction associated with liver cirrhosis. CD38+HLA-DR+CD8+ T cells, or bystander-activated CD8+ T cells, are involved in tissue injury but their specific contribution to liver cirrhosis remains unclear. This study sought to identify the mechanism for CD38+HLA-DR+CD8+ T cell-mediated pathogenesis during liver cirrhosis. Methods: The immunophenotype, antigen specificity, cytokine secretion and cytotoxicity-related indicators of CD38+HLA-DR+CD8+ T cells were determined using flow cytometry. The functional properties of these cells were assessed using transcriptome analysis. CD38+HLA-DR+CD8+ T-cell killing was detected using cytotoxicity and antibody-blocking assays. Results: The proportion of CD38+HLA-DR+CD8+ T cells was significantly elevated in liver cirrhosis patients and correlated with tissue damage. Transcriptome analysis revealed that these cells had innate-like functional characteristics. This CD8+ T-cell population primarily consisted of effector memory T cells and produced a high level of cytotoxicity-related cytokines, granzyme B and perforin. IL-15 promoted CD38+HLA-DR+CD8+ T-cell activation and proliferation, inducing significant TCR-independent cytotoxicity mediated through NKG2D. Conclusions: CD38+HLA-DR+CD8+ T cells correlated with cirrhosis-related liver injury and contributed to liver damage by signalling through NKG2D in a TCR-independent manner.

3.
Sci Rep ; 14(1): 20892, 2024 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245695

RESUMEN

To solve the issue of diagnosis accuracy of diabetic retinopathy (DR) and reduce the workload of ophthalmologists, in this paper we propose a prior-guided attention fusion Transformer for multi-lesion segmentation of DR. An attention fusion module is proposed to improve the key generator to integrate self-attention and cross-attention and reduce the introduction of noise. The self-attention focuses on lesions themselves, capturing the correlation of lesions at a global scale, while the cross-attention, using pre-trained vessel masks as prior knowledge, utilizes the correlation between lesions and vessels to reduce the ambiguity of lesion detection caused by complex fundus structures. A shift block is introduced to expand association areas between lesions and vessels further and to enhance the sensitivity of the model to small-scale structures. To dynamically adjust the model's perception of features at different scales, we propose the scale-adaptive attention to adaptively learn fusion weights of feature maps at different scales in the decoder, capturing features and details more effectively. The experimental results on two public datasets (DDR and IDRiD) demonstrate that our model outperforms other state-of-the-art models for multi-lesion segmentation.


Asunto(s)
Retinopatía Diabética , Retinopatía Diabética/diagnóstico por imagen , Humanos , Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos
4.
J Colloid Interface Sci ; 678(Pt C): 804-818, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39312869

RESUMEN

The development of cost-efficient bifunctional electrocatalysts is significant for overall water splitting. Herein, we report the in situ fabrication of heterogeneous NF/Ni3S2/Cu2S-X (where X refers to Cu2+ concentrations of 50, 75, and 100 mM) on nickel foam (NF) using an electrodeposition-hydrothermal method. The in situ electrodeposited metallic Cu0 layers on the NF conferred higher stability to the resulting bimetallic sulfide of Ni3S2/Cu2S. In alkaline media (1 M KOH), the optimized NF/Ni3S2/Cu2S-75 exhibited ultra-low overpotentials of 108 and 166 mV during the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at 10 mA·cm-2. For overall water splitting, the catalyst showed a significantly low cell voltage of 1.50 V and long stabilization time (≥150h)at15mA·cm-2. Density functional theory calculations revealed that the formation of Ni3S2/Cu2S heterojunction reduced the Gibbs free energy of hydrogen adsorption (ΔGH*) on the S site, thus facilitating H2 generation. This study serves as a guide for tailoring transition metal-based catalysts with enhanced activity and long-term durability, thereby contributing to highly efficient water electrolysis for large-scale hydrogen production.

5.
Nano Lett ; 24(37): 11512-11519, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39230027

RESUMEN

Metal-oxo clusters show great promise in lithium ion battery applications as anode materials by virtue of their native nature of well-defined nanostructures and multielectron redox activities. However, their intrinsic unsatisfactory electrical conductivity and tendency to aggregation make them difficult to fully utilize. Herein, a well-dispersed Mn12O12(CH3COO)16(H2O)4 (denoted as Mn12) cluster is constructed by rationally adopting carbon dots (CDs) with nanosize and high conductivity as stabilizers. Thanks to the fully exposed redox sites of Mn12 clusters and additional interfacial energy storage mechanism, the optimized Mn12/CDs-1:20 anode delivers a high specific capacity of 1643 mAh g-1 at 0.2 A g-1 (0.25 C) and exhibits outstanding rate and cycling capabilities. This paper provides a green and efficient paradigm to synthesize well-dispersed manganese-oxo clusters for the first time and builds a new platform for cluster-based energy storage.

6.
Technol Cancer Res Treat ; 23: 15330338241273239, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39110070

RESUMEN

Tumor growth and metastasis rely on angiogenesis. In recent years, long non-coding RNAs have been shown to play an important role in regulating tumor angiogenesis. Here, we review the multidimensional modes and relevant molecular mechanisms of long non-coding RNAs in regulating tumor angiogenesis. In addition, we summarize new strategies for tumor anti-angiogenesis therapies by targeting long non-coding RNAs. The aim of this study is to provide new diagnostic targets and treatment strategies for anti-angiogenic tumor therapy.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias , Neovascularización Patológica , ARN Largo no Codificante , ARN Largo no Codificante/genética , Humanos , Neovascularización Patológica/genética , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Neoplasias/irrigación sanguínea , Animales , Inhibidores de la Angiogénesis/uso terapéutico , Terapia Molecular Dirigida , Angiogénesis
7.
Angew Chem Int Ed Engl ; 63(43): e202410857, 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39073201

RESUMEN

As a class of predominantly used cathode interlayers (CILs) in organic solar cells (OSCs), perylene-diimide (PDI)-based polymers exhibit intriguing characteristics of excellent charge transporting capacity and suitable energy levels. Despite that, PDI-based CILs with satisfied film-forming ability and adequate solvent resistance are rather rare, which not only limits the further advance of OSC performances but also hinders the practical use of PDI CILs. Herein, we designed and synthesized two non-conjugated PDI polymers for achieving high power conversion efficiency (PCE) in diverse types of OSCs. The utilization of oligo (ethylene glycol) (OEG) linkage enhanced the n-doping effect of PDI polymers, leading to an improved ability of the CIL to reduce work function and improve electron transporting capability. Moreover, the introduction of the non-ionic OEG chain effectively improve the wetting property and solvent resistance of PDI polymers, so the PPDINN CIL can withstand diverse processing conditions in fabricating different OSCs, including conventional, inverted and blade-coated devices. The binary OSC with conventional structure using PPDINN CIL showed a PCE of 18.6 %, along with an improved device stability. Besides, PPDINN is compatible with the large-area blade-coating technique, and a PCE of 16.6 % was achieved in the 1-cm2 OSC where a blade-coated PPDINN was used.

8.
Nat Commun ; 15(1): 6208, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043681

RESUMEN

It is vital to explore effective ways for prolonging electrode lifespans under harsh electrolysis conditions, such as high current densities, acid environment, and impure water source. Here we report alternating electrolysis approaches that realize promptly and regularly repair/maintenance and concurrent bubble evolution. Electrode lifespans are improved by co-action of Fe group elemental ions and alkali metal cations, especially a unique Co2+-Na+ combo. A commercial Ni foam sustains ampere-level current densities alternatingly during continuous electrolysis for 93.8 h in an acidic solution, whereas such a Ni foam is completely dissolved in ~2 h for conventional electrolysis conditions. The work not only explores an alternating electrolysis-based system, alkali metal cation-based catalytic systems, and alkali metal cation-based electrodeposition techniques, and beyond, but demonstrates the possibility of prolonged electrolysis by repeated deposition-dissolution processes. With enough adjustable experimental variables, the upper improvement limit in the electrode lifespan would be high.

9.
J Phys Chem Lett ; 15(30): 7716-7723, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39041920

RESUMEN

The multiple magneto-/electrical quantum transitions discovered with d-band correlated metastable perovskite oxides, such as rare-earth nickelate (ReNiO3), enable applications in artificial intelligence and multifunctional sensors. Nevertheless, to date such investigation merely focuses on ReNiO3 with light or middle rare-earth composition, while the analogous explorations toward heavy rare-earth (ReHNiO3, ReH after Gd) are impeded by their ineffective material synthesis relying on GPa pressure. Herein, for the first time we synthesized the powder of ReHNiO3 in grams/batch with ∼1000 times lower pressure and ∼300 °C lower temperature in comparison to the previous ∼101 milligram/batch results, assisted by their eutectic precipitation and heterogeneous growth within alkali-metal halide molten salt at MPa oxygen pressures. Further in situ characterizations under high pressures within a diamond anvil cell reveal a distinguishing pressure predominated bad metal transport within the nonequilibrium state of ReHNiO3 showing high-pressure sensitivity up to 10 GPa, and the temperature dependences in electrical transportations are effectively frozen.

10.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39007681

RESUMEN

Carbonates or carbon-bearing materials may release gases under high pressure and high temperature (HP-HT) conditions. Characterizing the species and quantifying the volumes of these carbonaceous gases are critical for understanding carbon chemistry. However, the volatile nature of carbonaceous gas poses technical challenges in their collection, speciation, and quantification during HP-HT experiments. To address these challenges, we have developed a system that integrates sample collection, gas transportation, chemical conversion, and measurement of carbonaceous gases trapped within the large volume press capsules. The system comprises a capsule-crushing device for thorough sample pulverization, a mechanizer coupled with a flame ionization detector, a gas-sealing and transport interface, and gas chromatography for detection. To evaluate the system's capabilities, we quantified the gas volumes released from encapsulated kerogen quenched from 1.9 GPa to 873, 973, and 1073 K. The collected gas chromatography signals were compared to those obtained from standard mixed-gases. The volumes of CO2, CH4, and C2H6 in the samples were successfully derived from the signal peak area through calibration. The relative standard deviation value of two runs at 3 GPa and 1073 K is 1.956%, suggesting good reproducibility. Our system thus provides a robust solution for investigating carbon chemistry under HP-HT conditions.

11.
Oncogenesis ; 13(1): 20, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862467

RESUMEN

Metabolic reprogramming has become increasingly important in tumor biology research. The glucose metabolic pathway is a major energy source and is often dysregulated in breast cancer. DAB2IP is widely reported to be a tumor suppressor that acts as a scaffold protein to suppress tumor malignancy in breast cancer. Interestingly, DAB2IP has also been found to be a potential regulator of glucose uptake; however, the exact mechanism remains unclear. In this study, we found that DAB2IP inhibited glucose uptake under hypoxia conditions in breast cancer cells by suppressing HIF-1α signals. Mechanically, DAB2IP interacted with the E3 ubiquitin ligase STUB1 via its PER domain, thus triggering STUB1 mediated HIF-1α ubiquitylation and degradation, and inhibit glucose metabolism and tumor progression. Deleting the PER domain abrogated the DAB2IP-related inhibitory effects on glucose uptake, intracellular ATP production, and lactic acid production in breast cancer cells. These findings elucidate the biological roles of DAB2IP in cancer-related glucose metabolism as well as a novel mechanism by which STUB1-driven HIF-1α ubiquitylated degradation is regulated in breast cancer.

12.
Cancer Gene Ther ; 31(8): 1135-1150, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38926596

RESUMEN

Glioblastoma (GBM) is the most common and aggressive primary brain cancer; angiogenesis and immunosuppression exacerbate GBM progression. COUP-TFII demonstrates pro-angiogenesis activity; however, its role in glioma progression remains unclear. This study revealed that COUP-TFII promotes angiogenesis in gliomas by inducing transdifferentiation of glioma cells into endothelial-like cells. Mechanistic investigation suggested that COUP-TFII as a transcription factor exerts its function via binding to the promoter of TXNIP. Interestingly, COUP-TFII knockdown attenuated tumorigenesis and tumor progression in an immunocompetent mouse model but promoted tumor progression in an immuno-deficient mouse model. As an explanation, repression of COUP-TFII induces cellular senescence and activates immune surveillance in glioma cells in vitro and in vivo. In addition, we used heparin-polyethyleneimine (HPEI) nanoparticles to deliver COUP-TFII shRNA, which regulated tumor angiogenesis and immunosuppression in an in situ GBM mouse model. This study provides a novel strategy and potential therapeutic targets to treat GBM.


Asunto(s)
Modelos Animales de Enfermedad , Terapia Genética , Glioblastoma , Neovascularización Patológica , Animales , Glioblastoma/terapia , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/inmunología , Ratones , Humanos , Terapia Genética/métodos , Neovascularización Patológica/genética , Neovascularización Patológica/terapia , Factor de Transcripción COUP II/genética , Factor de Transcripción COUP II/metabolismo , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/inmunología , Línea Celular Tumoral , Nanopartículas/química , Terapia de Inmunosupresión/métodos
13.
Small ; : e2402338, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38924259

RESUMEN

A frozen-temperature (below -28 °C) laser tuning way is developed to optimize metal halide perovskite (MHP)'s stability and opto-electronic properties, for emitter, photovoltaic and detector applications. Here freezing can adjust the competitive laser irradiation effects between damaging and annealing/repairing. And the ligand shells on MHP surface, which are widely present for many MHP materials, can be frozen and act as transparent solid templates for MHP's re-crystallization/re-growth during the laser tuning. With model samples of different types of CsPbBr3 nanocube arrays,an attempt is made to turn the dominant exposure facet from low-energy [100] facet to high-energy [111], [-211], [113] and [210] ones respectively; selectively removing the surface impurities and defects of CsPbBr3 nanocubes to enhance the irradiation durability by 101 times; and quickly (tens of seconds) modifying a Ruddlesden-Popper (RP) boundary into another type of boundary like twinning, and so on. The laser tuning mechanism is revealed by an innovative in situ cryo-transmission electron microscope (cryo-TEM) exploration at atomic resolution.

14.
Proc Natl Acad Sci U S A ; 121(23): e2403726121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805293

RESUMEN

The key of heterostructure is the combinations created by stacking various vdW materials, which can modify interlayer coupling and electronic properties, providing exciting opportunities for designer devices. However, this simple stacking does not create chemical bonds, making it difficult to fundamentally alter the electronic structure. Here, we demonstrate that interlayer interactions in heterostructures can be fundamentally controlled using hydrostatic pressure, providing a bonding method to modify electronic structures. By covering graphene with boron nitride and inducing an irreversible phase transition, the conditions for graphene lattice-matching bonding (IMB) were created. We demonstrate that the increased bandgap of graphene under pressure is well maintained in ambient due to the IMB in the interface. Comparison to theoretical modeling emphasizes the process of pressure-induced interfacial bonding, systematically generalizes, and predicts this model. Our results demonstrate that pressure can irreversibly control interlayer bonding, providing opportunities for high-pressure technology in ambient applications and IMB engineering in heterostructures.

15.
JACS Au ; 4(5): 2050-2057, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38818063

RESUMEN

Luminescent chiral Tb-MOF microcrystals with the Tb2(COO)4 subunit indicated strong green mechano-luminescence under compression. Furthermore, piezofluorochromic behavior in the diamond anvil cell was observed, with the intensity tendency of decreasing-increasing-decreasing and a shortened lifetime upon compression, due to the reversible stretchable Tb-Tb interactions. The Tb-Tb distance upon compression was refined through in situ high-pressure X-ray absorption spectra, which was consistent with the tendency of the piezofluorochromic intensity. In situ high-pressure UV-vis absorption spectra, Fourier transform infrared spectra, and powder X-ray diffraction demonstrated the full recovery of Tb-MOF after over 10 GPa compressions due to the semiflexible ligand. This work not only provided an ultrastable Tb-MOF but also illustrated the relationship of the piezofluorochromic behavior with the detailed structural transformation for the first time.

16.
J Am Chem Soc ; 146(21): 14875-14888, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38750611

RESUMEN

Most of the nanozymes have been obtained based on trial and error, for which the application is usually compromised by enzymatic activity regulation due to a vague catalytic mechanism. Herein, a hollow axial Mo-Pt single-atom nanozyme (H-MoN5@PtN4/C) is constructed by a two-tier template capture strategy. The axial ligand can induce Mo 4d orbital splitting, leading to a rearrangement of spin electrons (↑ ↑ → ↑↓) to regulate enzymatic activity. This creates catalase-like activity and enhances oxidase-like activity to catalyze cascade enzymatic reactions (H2O2 → O2 → O2•-), which can overcome tumor hypoxia and accumulate cytotoxic superoxide radicals (O2•-). Significantly, H-MoN5@PtN4/C displays destructive d-π conjugation between the metal and substrate to attenuate the restriction of orbitals and electrons. This markedly improves enzymatic performance (catalase-like and oxidase-like activity) of a Mo single atom and peroxidase-like properties of a Pt single atom. Furthermore, the H-MoN5@PtN4/C can deplete overexpressed glutathione (GSH) through a redox reaction, which can avoid consumption of ROS (O2•- and •OH). As a result, H-MoN5@PtN4/C can overcome limitations of a complex tumor microenvironment (TME) for tumor-specific therapy based on TME-activated catalytic activity.


Asunto(s)
Electrones , Ligandos , Humanos , Platino (Metal)/química , Catalasa/química , Catalasa/metabolismo , Catálisis , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Glutatión/química , Glutatión/metabolismo , Nanoestructuras/química
18.
Comput Biol Med ; 175: 108549, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704901

RESUMEN

In this paper, we propose a multi-task learning (MTL) network based on the label-level fusion of metadata and hand-crafted features by unsupervised clustering to generate new clustering labels as an optimization goal. We propose a MTL module (MTLM) that incorporates an attention mechanism to enable the model to learn more integrated, variable information. We propose a dynamic strategy to adjust the loss weights of different tasks, and trade off the contributions of multiple branches. Instead of feature-level fusion, we propose label-level fusion and combine the results of our proposed MTLM with the results of the image classification network to achieve better lesion prediction on multiple dermatological datasets. We verify the effectiveness of the proposed model by quantitative and qualitative measures. The MTL network using multi-modal clues and label-level fusion can yield the significant performance improvement for skin lesion classification.


Asunto(s)
Piel , Humanos , Piel/diagnóstico por imagen , Piel/patología , Interpretación de Imagen Asistida por Computador/métodos , Aprendizaje Automático , Neoplasias Cutáneas/diagnóstico por imagen , Neoplasias Cutáneas/patología , Redes Neurales de la Computación , Algoritmos , Enfermedades de la Piel/diagnóstico por imagen
19.
Infect Drug Resist ; 17: 1281-1289, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38566771

RESUMEN

Purpose: Since the introduction of ceftazidime-avibactam (CZA) in the Chinese market, accumulating clinical evidence has substantiated its efficacy in the treatment of infections caused by carbapenem-resistant gram-negative bacteria (CR-GNB). Nevertheless, an ongoing debate persists concerning the choice between monotherapy and combination therapy when devising clinical anti-infection protocols. Patients and Methods: This retrospective, single-center observational study enrolled patients with CR-GNB infections who received CZA treatment between December 2019 and August 2023. The primary outcome assessed was 30-day mortality, and the secondary outcome measured was 14-day bacterial clearance. A multivariate Cox regression model was used to identify variables that were independently associated with 30-day mortality rate. Results: Eighty-three patients were enrolled in the study; of which, 45 received CZA monotherapy, whereas 38 received combination therapy. The overall 30-day mortality rate was 31.3%, and no significant difference was observed in the 30-day mortality rates between the CZA combination therapy and monotherapy groups (31.6% vs 31.1%, p=0.963). After adjustment by propensity score matching, the 30-day mortality rate was not significantly different between the two groups (28.6% vs 31.4%, p=0.794). Multivariate COX analysis revealed that age and SOFA score were independent predictors of 30-day mortality. Conclusion: Combination therapy with CZA and other antimicrobials was not found to have an advantage over monotherapy in reducing the 30-day mortality rate.

20.
Small ; 20(34): e2400441, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38593335

RESUMEN

Electrochemical reduction of carbon dioxide (CO2RR) to formate is economically beneficial but suffers from poor selectivity and high overpotential. Herein, enriched microcrystalline copper oxide is introduced on the surface of indium-based metal-organic frameworks. Benefiting from the CuO (111) microcrystalline shell and formed catalytic active In-Cu interfaces, the obtained MIL-68(In)/CuO heterostructure display excellent CO2RR to formate with a Faradaic efficiency (FE) as high as 89.7% at low potential of only -0.7 V vs. RHE in a flow cell. Significantly, the membrane electrode assembly (MEA) cell based on MIL-68(In)/CuO exhibit a remarkable current density of 640.3 mA cm-2 at 3.1 V and can be stably operated for 180 h at 2.7 V with a current density of 200 mA cm-2. The ex/in situ electrochemical investigations reveal that the introduction of CuO increases the formation rate of the carbon dioxide reduction intermediate *HCOO- and inhibits the competitive hydrogen evolution reaction. This work not only provides an in-depth study of the mechanism of the CO2RR pathways on In/Cu composite catalyst but also offers an effective strategy for the interface design of electrocatalytic carbon dioxide reduction reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...