Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 7(5): 2911-2923, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38619913

RESUMEN

Protective masks are critical to impeding microorganism transmission but can propagate infection via pathogen buildup and face touching. To reduce this liability, we integrated electrospun photocatalytic graphitic carbon nitride (g-C3N4) nanoflakes into standard surgical masks to confer a self-sanitization capacity. By optimizing the purine/melamine precursor ratio during synthesis, we reduced the g-C3N4 band gap from 2.92 to 2.05 eV, eliciting a 4× increase in sterilizing hydrogen peroxide production under visible light. This narrower band gap enables robust photocatalytic generation of reactive oxygen species from environmental and breath humidity to swiftly eliminate accumulated microbes. Under ambient sunlight, the g-C3N4 nanocomposite mask layer achieved a 97% reduction in the bacterial viability during typical use. Because the optimized band gap also allows photocatalytic activity under shadowless lamp illumination, the self-cleaning functionality could mitigate infection risk from residual pathogens in routine hospital settings. Both g-C3N4 and polycaprolactone demonstrate favorable biocompatibility and biodegradability, making this approach preferable over current commercially available metal-based options. Given the abundance and low cost of these components, this scalable approach could expand global access to reusable self-sanitizing protective masks, serving as a sustainable public health preparedness measure against future pandemics, especially in resource-limited settings.


Asunto(s)
Antibacterianos , Grafito , Ensayo de Materiales , Compuestos de Nitrógeno , Antibacterianos/farmacología , Antibacterianos/química , Grafito/química , Grafito/farmacología , Compuestos de Nitrógeno/química , Compuestos de Nitrógeno/farmacología , Purinas/química , Purinas/farmacología , Tamaño de la Partícula , Escherichia coli/efectos de los fármacos , Textiles/microbiología , Máscaras , Pruebas de Sensibilidad Microbiana , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Staphylococcus aureus/efectos de los fármacos , Humanos
2.
Mater Today Bio ; 21: 100689, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37448665

RESUMEN

Herein, an activable fluorescent probe for peroxynitrite (ONOO-), named NOP, was constructed for the accurate imaging in the processes of formation and inhibition of drug-induced liver injury induced by Acetaminophen (APAP). During the in-solution tests on the general optical properties, the probe showed advantages including good stability, wide pH adaption, high specificity and sensitivity in the monitoring of ONOO-. Subsequently, the probe was further applied in the model mice which used APAP to induce the injury and used inhibiting agents (GSH, Glu, NAC) to treat the induced injury. The construction of the liver injury model was confirmed by the pathological staining and the serum indexes including ALT, AST, ALP, TBIL as well as LDH. During the formation of the drug-induced liver injury, the fluorescence in the red channel enhanced in both time-dependent and dose-dependent manners. In inhibition tests, the inhibition of the liver injury exhibited the reduction of the fluorescence intensity. Therefore, NOP could achieve the accurate imaging in the processes of formation and inhibition of drug-induced liver injury. The information here might be helpful for the early diagnosis and the screening of potent treating candidates in liver injury cases.

3.
Talanta ; 259: 124504, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37027933

RESUMEN

Herein, a novel fluorescent probe, GTP, was developed for monitoring the GGT (γ-glutamyl transpeptidase) level in living cells and biopsies. It consisted of the typical recognition group γ-Glu (γ-Glutamylcysteine) and the fluorophore (E)-4-(4-aminostyryl)-1-methylpyridin-1-ium iodide. With a ratio response between the signal intensity at 560 nm and 500 nm (RI560/I500), it could be important complement for the turn-on ones. With the linear range of 0-50 U/L, the limit of detection was calculated as 0.23 µM. The detection system showed the strongest response near pH 7.4, and exhibited steady fluorescence signals for at least 48 h. With high selectivity, good anti-interference and low cytotoxicity, GTP was suitable for physiological applications. By monitoring the GGT level with the ratio values in the green and blue channels, the probe GTP could distinguish cancer cells from normal cells. Furthermore, in the mouse tissues and humanization tissue samples, the probe GTP could also recognize the tumor tissues from the normal ones.


Asunto(s)
Colorantes Fluorescentes , gamma-Glutamiltransferasa , Animales , Ratones , Colorantes Fluorescentes/toxicidad , Diagnóstico por Imagen , Biopsia , Guanosina Trifosfato
4.
Front Genet ; 14: 1141194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936422

RESUMEN

Introduction: Nucleotide-binding leucine-rich repeat (NLR) genes play a crucial role in green plants' responding to various pathogens. Genome-scale evolutionary studies of NLR genes are important for discovering and applying functional NLR genes. However, little is known about the evolution of NLR genes in the Apiaceae family including agricultural and medical plants. Methods: In this study, comparative genomic analysis was performed in four Apiaceae species to trace the dynamic evolutionary patterns of NLR genes during speciation in this family. Results: The results revealed different number of NLR genes in these four Apiaceae species, namely, Angelica sinensis (95), Coriandrum sativum (183), Apium graveolens (153) and Daucus carota (149). Phylogenetic analysis demonstrated that NLR genes in these four species were derived from 183 ancestral NLR lineages and experienced different levels of gene-loss and gain events. The contraction pattern of the ancestral NLR lineages was discovered during the evolution of D. carota, whereas a different pattern of contraction after first expansion of NLR genes was observed for A. sinensis, C. sativum and A. graveolens. Discussion: Taken together, rapid and dynamic gene content variation has shaped evolutionary history of NLR genes in Apiaceae species.

5.
Anal Biochem ; 668: 115114, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36907310

RESUMEN

Herein, a mitochondrial targeted fluorescent nitrite peroxide probe CHP for dynamic monitoring of cellular lung injury was developed. For the practical delivery and selectivity, the structural features including pyridine head and borate recognition group were selected. CHP could respond to ONOO- with the 585 nm fluorescence signal. The detecting system indicated advantages such as wide linear range (0.0-30 µM), high sensitivity (LOD = 0.18 µM), high selectivity and steadiness under different environmental conditions including pH (3.0-10.0), time (48 h) and medium. In living A549 cells, the response of CHP towards ONOO- showed dose-dependent and time-dependent tendencies. The co-localization suggested that CHP could achieve mitochondrial targeting. Moreover, CHP could monitor the variation of endogenous ONOO- level and the cellular lung injury induced by LPS.


Asunto(s)
Lesión Pulmonar , Nitritos , Humanos , Peróxidos , Colorantes Fluorescentes/química , Ácido Peroxinitroso/química
6.
Appl Opt ; 56(23): 6587-6595, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-29047951

RESUMEN

Visible light communications (VLC) using multi-color light-emitting diodes (LEDs) can support simultaneous high-speed data rate and high-quality lighting. However, since the radiation spectrum of LEDs has a limited width, spectral overlapping will result in multi-color cross talk even when optical filters are applied at the receivers. Moreover, since LEDs are used for illumination and wireless data transmission in the meantime, both lighting quality and communication performance must be considered in VLC systems. In this paper, we consider a multiple-input-multiple-output with low-complexity linear minimum mean square error detection to collaboratively manage the cross talk by maximizing the minimum signal-to-interference-plus-noise ratio (SINR) subject to chromaticity constraint based on MacAdam ellipse, luminance constraint, and signal range constraint. A sub-optimal convex relaxation is proposed to attack the SINR maximization problem. Extensive simulations indicate that the proposed method provides very efficient solutions and outperforms the conventional wave-division multiplexing scheme under the illumination constraint.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...