Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 274: 116236, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38503101

RESUMEN

Ambient ultraviolet radiation (UVB) from solar and artificial light presents serious environmental risks to aquatic ecosystems. The Pacific oyster, Crassostrea gigas, perceives changes in the external environment primarily through its mantle tissue, which contains many nerve fibers and tentacles. Changes within the mantles can typically illustrate the injury of ambient UVB. In this study, a comprehensive analysis of phenotypic, behavioral, and physiological changes demonstrated that extreme UVB radiation (10 W/m²) directly suppressed the behavioral activities of C. gigas. Conversely, under ambient UVB radiation (5 W/m²), various physiological processes exhibited significant alterations in C. gigas, despite the behavior remaining relatively unaffected. Using mathematical model analysis, the integrated analysis of the full-length transcriptome, proteome, and metabolome showed that ambient UVB significantly affected the metabolic processes (saccharide, lipid, and protein metabolism) and cellular biology processes (autophagy, apoptosis, oxidative stress) of the C. gigas mantle. Subsequently, using Procrustes analysis and Pearson correlation analysis, the association between multi-omics data and physiological changes, as well as their biomarkers, revealed the effect of UVB on three crucial biological processes: activation of autophagy signaling (key factors: Ca2+, LC3B, BECN1, caspase-7), response to oxidative stress (reactive oxygen species, heat shock 70, cytochrome c oxidase), and recalibration of energy metabolism (saccharide, succinic acid, translation initiation factor IF-2). These findings offer a fresh perspective on the integration of multi-data from non-model animals in ambient UVB risk assessment.


Asunto(s)
Crassostrea , Animales , Crassostrea/metabolismo , Rayos Ultravioleta/efectos adversos , Ecosistema , Respuesta al Choque Térmico , Transcriptoma
2.
Mar Environ Res ; 195: 106367, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38277815

RESUMEN

Microplastics (MPs) aging in natural ecosystems are caused by solar irradiation. Photo-aged MPs in aquatic systems are a major threat to molluscs. In this study, polystyrene (PS) photo-aging was simulated using a sunlight simulator. After exposure of Crassostrea gigas to photo-aged PS, a decreased gonadosomatic index, coupled with histological alterations, suggested an inhibitory effect on the gonadal development of bivalves. As the concentration of aged PS increased, the inhibitory effects on gonadal development became more severe. The sex hormone (testosterone and estradiol) and energy metabolism (glycogen, lipid, and protein content) differences between C. gigas males and females suggested a disruption of sex hormonal homeostasis and a shift in energy allocation strategy, which may have affected reproduction, especially female oysters. In addition, the substantial downregulation of SOX-8, SOX-E, Piwi1, and TGF-ß genes may be contributing factors causing the inhibitory effect of aged PS on the gonadal development of C. gigas. This study provides an essential reference for evaluating the reproductive health risks posed by aged MPs and offers novel insights and perspectives for exploring the impact of MPs under natural conditions.


Asunto(s)
Crassostrea , Contaminantes Químicos del Agua , Animales , Masculino , Femenino , Microplásticos , Poliestirenos , Plásticos , Ecosistema , Crassostrea/fisiología , Luz Solar , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA