Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biotechnol Biofuels Bioprod ; 17(1): 86, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38915078

RESUMEN

BACKGROUND: Soybean (Glycine max) is a vital oil-producing crop. Augmenting oleic acid (OA) levels in soybean oil enhances its oxidative stability and health benefits, representing a key objective in soybean breeding. Pongamia (Pongamia pinnata), known for its abundant oil, OA, and flavonoid in the seeds, holds promise as a biofuel and medicinal plant. A comparative analysis of the lipid and flavonoid biosynthesis pathways in Pongamia and soybean seeds would facilitate the assessment of the potential value of Pongamia seeds and advance the genetic improvements of seed traits in both species. RESULTS: The study employed multi-omics analysis to systematically compare differences in metabolite accumulation and associated biosynthetic genes between Pongamia seeds and soybean seeds at the transcriptional, metabolic, and genomic levels. The results revealed that OA is the predominant free fatty acid in Pongamia seeds, being 8.3 times more abundant than in soybean seeds. Lipidomics unveiled a notably higher accumulation of triacylglycerols (TAGs) in Pongamia seeds compared to soybean seeds, with 23 TAG species containing OA. Subsequently, we identified orthologous groups (OGs) involved in lipid biosynthesis across 25 gene families in the genomes of Pongamia and soybean, and compared the expression levels of these OGs in the seeds of the two species. Among the OGs with expression levels in Pongamia seeds more than twice as high as in soybean seeds, we identified one fatty acyl-ACP thioesterase A (FATA) and two stearoyl-ACP desaturases (SADs), responsible for OA biosynthesis, along with two phospholipid:diacylglycerol acyltransferases (PDATs) and three acyl-CoA:diacylglycerol acyltransferases (DGATs), responsible for TAG biosynthesis. Furthermore, we observed a significantly higher content of the flavonoid formononetin in Pongamia seeds compared to soybean seeds, by over 2000-fold. This difference may be attributed to the tandem duplication expansions of 2,7,4'-trihydroxyisoflavanone 4'-O-methyltransferases (HI4'OMTs) in the Pongamia genome, which are responsible for the final step of formononetin biosynthesis, combined with their high expression levels in Pongamia seeds. CONCLUSIONS: This study extends beyond observations made in single-species research by offering novel insights into the molecular basis of differences in lipid and flavonoid biosynthetic pathways between Pongamia and soybean, from a cross-species comparative perspective.

2.
Plant J ; 117(3): 729-746, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37932930

RESUMEN

Stylo (Stylosanthes guianensis) is a tropical legume known for its exceptional tolerance to low phosphate (Pi), a trait believed to be linked to its high acid phosphatase (APase) activity. Previous studies have observed genotypic variations in APase activity in stylo; however, the gene encoding the crucial APase responsible for this variation remains unidentified. In this study, transcriptomic and proteomic analyses were employed to identify eight Pi starvation-inducible (PSI) APases belonging to the purple APase (PAP) family in the roots of stylo and seven in the leaves. Among these PSI-PAPs, SgPAP7 exhibited a significantly positive correlation in its expression levels with the activities of both internal APase and root-associated APase across 20 stylo genotypes under low-Pi conditions. Furthermore, the recombinant SgPAP7 displayed high catalytic activity toward adenosine 5'-diphosphate (ADP) and phosphoenolpyruvate (PEP) in vitro. Overexpression (OE) of SgPAP7 in Arabidopsis facilitated exogenous organic phosphorus utilization. Moreover, SgPAP7 OE lines showed lower shoot ADP and PEP levels than the wild type, implying that SgPAP7 is involved in the catabolism and recycling of endogenous ADP and PEP, which could be beneficial for plant growth in low-Pi soils. In conclusion, SgPAP7 is a key gene with a major role in stylo adaptation to low-Pi conditions by facilitating the utilization of both exogenous and endogenous organic phosphorus sources. It may also function as a PEP phosphatase involved in a glycolytic bypass pathway that minimizes the need for adenylates and Pi. Thus, SgPAP7 could be a promising target for improving tolerance of crops to low-Pi availability.


Asunto(s)
Arabidopsis , Fabaceae , Fabaceae/genética , Fabaceae/metabolismo , Multiómica , Proteómica , Fósforo/metabolismo , Verduras/metabolismo , Fosfatasa Ácida/genética , Fosfatasa Ácida/metabolismo , Arabidopsis/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Food Chem X ; 20: 100917, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144742

RESUMEN

This study aimed to examine the interaction mechanism of polyphenol protein in a heat-treated aqueous solution system using epigallocatechin gallate (EGCG) and whey protein (WP) as raw materials. Further, we hypothesized the binding characteristics of these two compounds. The results were as follows: The quenching mechanism between WP and EGCG was characterized as static quenching. As the temperature increased, the binding constant and the binding force between EGCG and WP both increased. The number of binding sites (denoted as n) between WP and EGCG was approximately 1. Hence, WP provided a single site to bind to EGCG to form a complex. The main binding modes between WP and EGCG were hydrophobic and electrostatic interactions, and they were spontaneously combined into complexes (ΔG < 0). This study provided a basis for the interaction between WP and EGCG under different heating conditions and their combination mode.

4.
Front Plant Sci ; 14: 1146398, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251779

RESUMEN

Pigeon pea is a perennial leguminous plant that is widely cultivated as a forage and pharmaceutical plant in subtropical and tropical areas, especially in artificial grasslands. Higher seed shattering is one of the most important factors in potentially increasing the seed yield of pigeon pea. Advance technology is necessary to increase the seed yield of pigeon pea. Through 2 consecutive years of field observations, we found that fertile tiller number was the key component of the seed yield of pigeon pea due to the direct effect of fertile tiller number per plant (0.364) on pigeon pea seed yield was the highest. Multiplex morphology, histology, and cytological and hydrolytic enzyme activity analysis showed that shatter-susceptible and shatter-resistant pigeon peas possessed an abscission layer at the same time (10 DAF); however, abscission layer cells dissolved earlier in shattering-susceptible pigeon pea (15 DAF), which led to the tearing of the abscission layer. The number of vascular bundle cells and vascular bundle area were the most significant negative factors (p< 0.01) affecting seed shattering. Cellulase and polygalacturonase were involved in the dehiscence process. In addition, we inferred that larger vascular bundle tissues and cells in the ventral suture of seed pods could effectively resist the dehiscence pressure of the abscission layer. This study provides foundation for further molecular studies to increase the seed yield of pigeon pea.

5.
Front Plant Sci ; 13: 1018404, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325564

RESUMEN

Stylosanthes spp. (stylo) are annual or perennial legume forages that are widely grown as forage and cover crops in tropical and subtropical regions. However, the seed yield of stylo is very low due to serious seed shattering. In the present study, we found that, although seed shattering was common among the stylo accessions, the shattering rates were genetically different. Therefore, we first synthesized the morphological, histological characteristic, physiochemical, and transcriptome analyses to determine the seed shattering mechanism in stylo. In general, the stylo germplasm with shorter lobules and thicker stems had a lower seed shattering rate and a higher seed weight. The seed and seed stalk joint is the abscission zone in stylo. Multiplex histology and hydrolytic enzyme activity analysis showed that the tearing of the abscission zone occurs due to the intense enzymatic degradation of polygalacturonase and cellulase in the seed shattering-susceptible accession TF0275. cDNA libraries from the abscission zone tissues of TF0041 and TF0275 at 14, 21, and 28 days after flowering were constructed and sequenced. A total of 47,606 unigenes were annotated and 18,606 differentially expressed genes (DEGs) were detected, including 9,140 upregulated and 9,446 downregulated unigenes. Furthermore, the 26 candidate DEGs involved in lignin biosynthesis, cellulase synthesis, and plant hormone signal transduction were found at all three developmental stages. This study provides valuable insights for future mechanistic studies of seed shattering in stylo.

6.
Sci Total Environ ; 851(Pt 2): 158400, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36049694

RESUMEN

Plant residue input alters native soil organic carbon (SOC) mineralization through the priming effect, which strongly controls C sequestration during vegetation restoration. However, the effects of different vegetation types on SOC priming and the underlying microbial mechanisms due to global warming are poorly understood. To elucidate these unknowns, the current study quantified soil priming effects using 13C-labeled maize residue amendments and analyzed the community structure and abundances in the soils of a vegetation succession gradient (maize field (MF), grassland (GL), and secondary forest (SF)) from a karst region under two incubation temperatures (15 °C and 25 °C). Results revealed that after 120 d of incubation, vegetation restoration increased the soil priming effects. Compared to MF, the priming effects of SF at 15 °C and 25 °C increased by 142.36 % and 161.09 %, respectively. This may be attributed to a high C/N ratio and low-N availability (NO3-), which supports the "microbial nitrogen mining" theory. Variations in soil priming were linked to changes in microbial properties. Moreover, with vegetation restoration, the relative abundance of Actinobacteria (copiotrophs) increased, while Ascomycota (oligotrophs) decreased, which accelerated native SOC decomposition. Co-occurrence network analysis indicated that the cooperative interactions of co-existing keystone taxa may facilitate SOC priming. Furthermore, structural equation modeling (SEM) indicated that changes in the priming effects were directly related to the fungal Shannon index and microbial biomass C (MBC), which were affected by soil C/N and NO3-. Warming significantly decreased soil priming, which may be attributed to the increase in microbial respiration (qCO2) and decreased MBC. The temperature sensitivity (Q10) of SOC mineralization was higher after residue amendment, but significant differences were not detected among the vegetation types. Collectively, our results indicated that the intensity of priming effects was dependent on vegetation type and temperature. Microbial community alterations and physicochemical interactions played important roles in SOC decomposition and sequestration.


Asunto(s)
Carbono , Suelo , Suelo/química , Carbono/análisis , Temperatura , Microbiología del Suelo , Nitrógeno/análisis , China
7.
Hortic Res ; 9: uhac107, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795392

RESUMEN

Pigeonpea (Cajanus cajan) is an important legume food crop and plays a crucial role in a secure food supply in many developing countries. Several previous studies have suggested that pigeonpea has great potential for phosphorus (P) deficiency tolerance, but little is known about the underlying mechanism. In this study, the physiological and molecular responses of pigeonpea roots to phosphate (Pi) starvation were investigated through integrating phenotypic, genomic, transcriptomic, metabolomic, and lipidomic analyses. The results showed that low-Pi treatment increased total root length, root surface area, and root acid phosphatase activity, and promoted the secretion of organic acids (e.g. citric acids, piscidic acids, and protocatechuic acids) and the degradation of phospholipids and other P-containing metabolites in the roots of pigeonpea. Consistent with the morphological, physiological, and biochemical changes, a large number of genes involved in these Pi-starvation responses were significantly upregulated in Pi-deficient pigeonpea roots. Among these Pi-starvation response genes upregulated by low-Pi treatment, four gene families were expanded through recent tandem duplication in the pigeonpea genome, namely phosphate transporter 1 (PHT1), phosphoethanolamine/phosphocholine phosphatase (PECP), fasciclin-like arabinogalactan protein (FLA), and glutamate decarboxylase (GAD). These gene families may be associated with Pi uptake from the soil, phospholipid recycling, root morphological remodeling, and regulation of organic acid exudation. Taken together, our results suggest that pigeonpea employs complex Pi-starvation responses to strengthen P acquisition and utilization during low-Pi stress. This study provides new insights into the genome evolution and P deficiency adaptation mechanism of pigeonpea.

8.
Foods ; 11(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35407023

RESUMEN

Owing to their excellent characteristics, Pickering emulsions have been widely used in the development and the application of new carriers for embedding and for delivering active compounds. In this study, ß-carotene was successfully encapsulated in a Pickering emulsion stabilized using Desmodium intortum protein isolate (DIPI). The results showed that the encapsulation efficiencies of ß-carotene in the control group Tween 20 emulsion (TE) and the DIPI Pickering emulsion (DIPIPE) were 46.7 ± 2.5% and 97.3 ± 0.8%, respectively. After storage for 30 days at 25 °C and 37 °C in a dark environment, approximately 79.4% and 72.1% of ß-carotene in DIPIPE were retained. Compared with TE, DIPIPE can improve the stability of ß-carotene during storage. In vitro digestion experiments showed that the bioaccessibility rate of ß-carotene in DIPIPE was less than that in TE. Cytotoxicity experiments showed that DIPI and ß-carotene micelles within a specific concentration range exerted no toxic effects on 3T3 cells. These results indicate that DIPIPE can be used as a good food-grade carrier for embedding and transporting active substances to broaden the application of the protein-based Pickering emulsion system in the development of functional foods.

9.
Front Plant Sci ; 13: 1109877, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714687

RESUMEN

Grazing is the main way of utilizing understory vegetation in the tropics. However, the effects of grazing on vegetation diversity and soil functions in coconut plantations remain unclear. Therefore, this study was conducted in a young coconut plantation that was grazed by geese in Wenchang, China. We identified four grazing intensities according to the aboveground biomass, namely, no grazing (CK), light grazing (LG), moderate grazing (MG), and heavy grazing (HG). In April 2022, we used the quadrat method to investigate the composition and traits of vegetation, collected and analyzed 0-40-cm soil samples in each grazing intensity. The results showed that grazing changed the composition of understory species. The predominant species changed from Bidens pilosa to Praxelis clematidea + Paspalum thunbergii and then to P. clematidea with increasing grazing intensity. The richness, Shannon-Wiener index, evenness, modified functional attribute diversity (MFAD), functional divergence (Fdiv), and functional evenness (Feve) of CK were 4.5, 1.0, 0.29, 0.20, 0.84, and 0.80, respectively. Taxonomic diversity did not respond to LG, but responded significantly to MG and HG. Compared with CK, MG and HG increased richness by 96% and 200%, respectively, and Shannon-Wiener index increased by 40% and 98%, respectively. HG increased evenness by 95%. For functional diversity, MG and HG increased MFAD by 164% and 560%, respectively, but Fdiv and Feve did not respond to grazing intensity. The carbon (C) functioning, nitrogen (N) functioning, phosphorus (P) functioning, and multifunctionality in the 0-10-cm topsoil of CK were -0.03, 0.37, -0.06, 0.20, and 0.14, respectively. Grazing increased C functioning, P functioning, and multifunctionality in the 0-10-cm topsoil but decreased N functioning. Multiple linear regression showed that the taxonomic diversity and functional diversity could be used to estimate soil functions, but these vary among soil layers. In general, MG and HG can increase vegetation diversity and soil function. It may be possible to promote even distribution of geese by adding water sources or zoning grazing. Furthermore, quantitative grazing experiments are needed to determine the efficient use pattern of the understory in coconut plantations in tropics.

10.
Front Plant Sci ; 13: 1069191, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618667

RESUMEN

Phosphorus (P) is an essential macronutrient element for plant growth, and deficiency of inorganic phosphate (Pi) limits plant growth and yield. Elephant grass (Pennisetum purpureum) is an important fodder crop cultivated widely in tropical and subtropical areas throughout the world. However, the mechanisms underlying efficient P use in elephant grass under Pi deficiency remain poorly understood. In this study, the physiological and molecular responses of elephant grass leaves and roots to Pi deficiency were investigated. The results showed that dry weight, total P concentration, and P content decreased in Pi-deprived plants, but that acid phosphatase activity and P utilization efficiency (PUE) were higher than in Pi-sufficient plants. Regarding Pi starvation-responsive (PSR) genes, transcriptomics showed that 59 unigenes involved in Pi acquisition and transport (especially 18 purple acid phosphatase and 27 phosphate transporter 1 unigenes) and 51 phospholipase unigenes involved in phospholipids degradation or Pi-free lipids biosynthesis, as well as 47 core unigenes involved in the synthesis of phenylpropanoids and flavonoids, were significantly up-regulated by Pi deprivation in leaves or roots. Furthermore, 43 unigenes related to Pi-independent- or inorganic pyrophosphate (PPi)-dependent bypass reactions were markedly up-regulated in Pi-deficient leaves, especially five UDP-glucose pyrophosphorylase and 15 phosphoenolpyruvate carboxylase unigenes. Consistent with PSR unigene expression changes, metabolomics revealed that Pi deficiency significantly increased metabolites of Pi-free lipids, phenylpropanoids, and flavonoids in leaves and roots, but decreased phospholipid metabolites. This study reveals the mechanisms underlying the responses to Pi starvation in elephant grass leaves and roots, which provides candidate unigenes involved in efficient P use and theoretical references for the development of P-efficient elephant grass varieties.

11.
Front Plant Sci ; 12: 683813, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912352

RESUMEN

Manganese is an essential micronutrient for plant growth but can be toxic to plants when it reaches excessive levels. Although metal tolerance proteins (MTPs), which belong to the cation diffusion facilitator (CDF) family, have been demonstrated to play critical roles in manganese (Mn) tolerance in plants, the characteristics and functions of GmMTP members in the response of soybean (Glycine max) to Mn toxicity have not been documented. In this study, growth inhibition was observed in soybean plants that were exposed to a toxic level of Mn in hydroponics, as reflected by the generation of brown spots, and decreased leaf chlorophyll concentration and plant fresh weight. Subsequent genome-wide analysis resulted in the identification of a total of 14 GmMTP genes in the soybean genome. Among these GmMTPs, 9 and 12 were found to be regulated by excess Mn in leaves and roots, respectively. Furthermore, the function of GmMTP8.1, a Mn-CDF homologue of ShMTP8 identified in the legume Stylosanthes hamata that is involved in Mn detoxification, was characterized. Subcellular localization analysis showed that GmMTP8.1 was localized to the endoplasmic reticulum (ER). Heterologous expression of GmMTP8.1 led to the restoration of growth of the Mn-hypersensitive yeast (Saccharomyces cerevisiae) mutant Δpmr1, which is made defective in Mn transport into the Golgi apparatus by P-type Ca/Mn-ATPase. Furthermore, GmMTP8.1 overexpression conferred tolerance to the toxic level of Mn in Arabidopsis (Arabidopsis thaliana). Under excess Mn conditions, concentrations of Mn in shoots but not roots were decreased in transgenic Arabidopsis, overexpressing GmMTP8.1 compared to the wild type. The overexpression of GmMTP8.1 also led to the upregulation of several transporter genes responsible for Mn efflux and sequestration in Arabidopsis, such as AtMTP8/11. Taken together, these results suggest that GmMTP8.1 is an ER-localized Mn transporter contributing to confer Mn tolerance by stimulating the export of Mn out of leaf cells and increasing the sequestration of Mn into intracellular compartments.

12.
Genomics ; 113(1 Pt 2): 728-735, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33053410

RESUMEN

Pigeonpea is the main protein source for more than one billion people, and it shows a strong adaptation to biotic stress and abiotic stress. Gene duplication is a fundamental process in genome evolution. Although the draft sequence of the pigeonpea genome has been available since 2011, further analysis of tandem duplicated genes (TDGs) and their contribution to the evolution of pigeonpea has not been reported. In this study, we identify 3211 TDGs in the pigeonpea genome and KEGG enrichment analysis of these genes shows that the TDGs are significantly enriched in resistance-related pathways. In addition, we find that TDGs are more abundant in retrotransposon-related genes in pigeonpea than in the other species included in our study. These results indicate that stress resistance in pigeonpea may be ascribed to resistance-related pathways and retrotransposons originating from tandem duplications. Our study will provide an important basis for further research in pigeonpea breeding.


Asunto(s)
Cajanus/genética , Duplicación de Gen , Estrés Fisiológico , Cajanus/metabolismo , Genoma de Planta
13.
BMC Genomics ; 21(1): 861, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33272205

RESUMEN

BACKGROUND: As a heavy metal, manganese (Mn) can be toxic to plants. Stylo (Stylosanthes) is an important tropical legume that exhibits tolerance to high levels of Mn. However, little is known about the adaptive responses of stylo to Mn toxicity. Thus, this study integrated both physiological and transcriptomic analyses of stylo subjected to Mn toxicity. RESULTS: Results showed that excess Mn treatments increased malondialdehyde (MDA) levels in leaves of stylo, resulting in the reduction of leaf chlorophyll concentrations and plant dry weight. In contrast, the activities of enzymes, such as peroxidase (POD), phenylalanine ammonia-lyase (PAL) and polyphenol oxidase (PPO), were significantly increased in stylo leaves upon treatment with increasing Mn levels, particularly Mn levels greater than 400 µM. Transcriptome analysis revealed 2471 up-regulated and 1623 down-regulated genes in stylo leaves subjected to Mn toxicity. Among them, a set of excess Mn up-regulated genes, such as genes encoding PAL, cinnamyl-alcohol dehydrogenases (CADs), chalcone isomerase (CHI), chalcone synthase (CHS) and flavonol synthase (FLS), were enriched in secondary metabolic processes based on gene ontology (GO) analysis. Numerous genes associated with transcription factors (TFs), such as genes belonging to the C2H2 zinc finger transcription factor, WRKY and MYB families, were also regulated by Mn in stylo leaves. Furthermore, the C2H2 and MYB transcription factors were predicted to be involved in the transcriptional regulation of genes that participate in secondary metabolism in stylo during Mn exposure. Interestingly, the activation of secondary metabolism-related genes probably resulted in increased levels of secondary metabolites, including total phenols, flavonoids, tannins and anthocyanidins. CONCLUSIONS: Taken together, this study reveals the roles of secondary metabolism in the adaptive responses of stylo to Mn toxicity, which is probably regulated by specific transcription factors.


Asunto(s)
Fabaceae , Manganeso , Fabaceae/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Humanos , Manganeso/toxicidad , Hojas de la Planta , Metabolismo Secundario/genética , Transcriptoma
14.
Int J Mol Sci ; 20(20)2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31615142

RESUMEN

Manganese (Mn) is an essential element for plant growth due to its participation in a series of physiological and metabolic processes. Mn is also considered a heavy metal that causes phytotoxicity when present in excess, disrupting photosynthesis and enzyme activity in plants. Thus, Mn toxicity is a major constraint limiting plant growth and production, especially in acid soils. To cope with Mn toxicity, plants have evolved a wide range of adaptive strategies to improve their growth under this stress. Mn tolerance mechanisms include activation of the antioxidant system, regulation of Mn uptake and homeostasis, and compartmentalization of Mn into subcellular compartments (e.g., vacuoles, endoplasmic reticulum, Golgi apparatus, and cell walls). In this regard, numerous genes are involved in specific pathways controlling Mn detoxification. Here, we summarize the recent advances in the mechanisms of Mn toxicity tolerance in plants and highlight the roles of genes responsible for Mn uptake, translocation, and distribution, contributing to Mn detoxification. We hope this review will provide a comprehensive understanding of the adaptive strategies of plants to Mn toxicity through gene regulation, which will aid in breeding crop varieties with Mn tolerance via genetic improvement approaches, enhancing the yield and quality of crops.


Asunto(s)
Transporte Biológico/efectos de los fármacos , Manganeso/toxicidad , Metales Pesados/toxicidad , Plantas/genética , Antioxidantes/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/genética , Homeostasis/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Plantas/efectos de los fármacos
15.
Int J Mol Sci ; 18(8)2017 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-28788047

RESUMEN

Salinity is a serious limiting factor for the growth of rhizobia. Some rhizobia are tolerant to salt stress and promote plant growth, but the mechanisms underlying these effects are poorly characterized. The growth responses and osmoprotectants in four Bradyrhizobium strains were examined under salt stress in this study. Two-dimensional electrophoresis (2-DE) and mass spectrometry were conducted to investigate protein profiles in rhizobia exposed to salt stress. Subsequently, salt tolerance in stylo (Stylosanthesguianensis) inoculated with rhizobia was further detected in hydroponics. Results showed that the Bradyrhizobium strain RJS9-2 exhibited higher salt tolerance than the other three Bradyrhizobium strains. RJS9-2 was able to grow at 0.35 M NaCl treatment, while the other three Bradyrhizobium strains did not grow at 0.1 M NaCl treatment. Salt stress induced IAA production, and accumulation of proline, betaine, ectoine, and trehalose was observed in RJS9-2 but not in PN13-1. Proteomics analysis identified 14 proteins regulated by salt stress in RJS9-2 that were mainly related to the ABC transporter, stress response, and protein metabolism. Furthermore, under saline conditions, the nodule number, plant dry weight, and N concentration in stylo plants inoculated with RJS9-2 were higher than those in plants inoculated with PN13-1. These results suggest that the tolerance of RJS9-2 to salt stress may be achieved by the coordination of indole-3-acetic acid (IAA) production, osmoprotectant accumulation, and protein expression, thus promoting stylo growth.


Asunto(s)
Bradyrhizobium/fisiología , Fabaceae/crecimiento & desarrollo , Fabaceae/microbiología , Salinidad , Tolerancia a la Sal , Proteínas Bacterianas , Fabaceae/metabolismo , Ácidos Indolacéticos/metabolismo , Viabilidad Microbiana , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Proteómica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...