Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Arch Anim Nutr ; 77(6): 487-496, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38083842

RESUMEN

The present study aimed to investigate the effect of emulsifier lysophospholipids (LP), enzymatically modified from soy phospholipids, on the growth performance, nutrient digestibility, lipid metabolism and meat quality of fattening rabbits. The LP was added in control (CON), LP1, LP2 and LP3 at 0, 200, 400 and 600 mg/kg, respectively. A total of 240 rabbits at approximately 52 d of age were divided into 4 groups with 6 replicates of 10 rabbits each. The feeding trial lasted for 42 d. Results showed that compared to CON, LP1, LP2 and LP3 increased (p < 0.05) body weight gain, feed efficiency, the apparent faecal digestibility of gross energy, crude protein and ether extract, the percentages of dissectible fat and ether extract in the longissimus and legs, the serum contents of apolipoprotein B, free fatty acid and total phospholipids in the longissimus, but decreased (p < 0.05) serum total triglyceride and total cholesterol. Meanwhile, LP1, LP2 and LP3 had higher (p < 0.05) carcass weight, longissimus weight and percentages of foreleg and hindleg than the CON; and the three LP diets also increased (p < 0.05) the tenderness, lightness and redness of longissimus. It is concluded that soy LP as an emulsifier can improve the growth, digestibility and meat quality of fattening rabbits.


Asunto(s)
Dieta , Metabolismo de los Lípidos , Conejos , Animales , Dieta/veterinaria , Digestión , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Nutrientes , Lisofosfolípidos/farmacología , Carne/análisis , Éteres/farmacología
2.
Langmuir ; 39(48): 17333-17341, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37988122

RESUMEN

Oil-in-water emulsions are extensively used in skincare products due to their improved texture, stability, and effectiveness. There is limited success in developing effective delivery systems that can selectively target the active sunscreen ingredients onto the skin surface. Herein, an organohydrogel was prepared by physical cross-linking of an oil-in-water nanoemulsion with chitosan under neutral pH conditions. In the presence of a small quantity of coconut oil, lauramidopropyl betaine and glycerol were able to emulsify the active sunscreen ingredients into nanoscale droplets with enhanced ultraviolet light absorption. A facile pH-triggered interfacial cross-linking approach was applied to transform the nanoemulsion into an organohydrogel sunscreen. Furthermore, the organohydrogel sunscreen displayed encouraging characteristics including efficient UV-blocking capacity, resistance to water, simple removal, and minimal skin penetration. This facile approach provides an effective pathway for scaling up the organohydrogels, which are highly suitable for the safe application of sunscreen.

3.
J Adv Res ; 41: 63-75, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36328754

RESUMEN

INTRODUCTIONS: Excessive mechanical stress is closely associated with cell death in various conditions. Exposure of chondrocytes to excessive mechanical loading leads to a catabolic response as well as exaggerated cell death. Ferroptosis is a recently identified form of cell death during cell aging and degeneration. However, it's potential association with mechanical stress remains to be illustrated. OBJECTIVES: To identify whether excessive mechanical stress can cause ferroptosis. To explore the role of mechanical overloading in chondrocyte ferroptosis. METHODS: Chondrocytes were collected from loading and unloading zones of cartilage in patients with osteoarthritis (OA), and the ferroptosis phenotype was analyzed through transmission electron microscope and microarray. Moreover, the relationship between ferroptosis and OA was analyzed by GPX4-conditional knockout (Col2a1-CreERT: GPX4flox/flox) mice OA model and chondrocytes cultured with high strain mechanical stress. Furthermore, the role of Piezo1 ion channel in chondrocyte ferroptosis and OA development was explored by using its inhibitor (GsMTx4) and agonist (Yoda1). Additionally, chondrocyte was cultured in calcium-free medium with mechanical stress, and ferroptosis phenotype was tested. RESULTS: Human cartilage and mouse chondrocyte experiments revealed that mechanical overloading can induce GPX4-associated ferroptosis. Conditional knockout of GPX4 in cartilage aggravated experimental OA process, while additional treatment with ferroptosis suppressor protein (FSP-1) and coenzyme Q10 (CoQ10) abated OA development in GPX4-CKO mice. In mouse OA model and chondrocyte experiments, inhibition of Piezo1 channel activity increased GPX4 expression, attenuated ferroptosis phenotype and reduced the severity of osteoarthritis. Additionally, high strain mechanical stress induced ferroptosis damage in chondrocyte was largely abolished by blocking calcium influx through calcium-free medium. CONCLUSIONS: Our findings show that mechanical overloading induces ferroptosis through Piezo1 activation and subsequent calcium influx in chondrocytes, which might provide a potential target for OA treatment.


Asunto(s)
Cartílago Articular , Ferroptosis , Osteoartritis , Animales , Humanos , Ratones , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Canales Iónicos/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , Estrés Mecánico
4.
Langmuir ; 38(39): 11994-12004, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36137186

RESUMEN

For a long time, the potential application of gel-based ionic devices was limited by the problem of liquid leakage or evaporation. Here, we utilized amorphous, irreversible and reversible cross-linked polyTA (PTA) as a matrix and lithium bis(trifluoromethane sulfonamide) (LiTFSI) as an electrolyte to prepare a stretchable (495%) and self-healing (94%) solvent-free elastomeric ionic conductor. The liquid-free ionic elastomer can be used as a stable strain sensor to monitor human activities sensitively under extreme temperatures. Moreover, the prepared elastic conductor (TEOA0.10-PTA@LiTFSI) was also considered an electrode to assemble with self-designed repairable dielectric organosilicon layers (RD-PDMS) to develop a sustainable triboelectric nanogenerator (SU-TENG) with outstanding performance. SU-TENG maintained good working ability under extreme conditions (-20 °C, 60 °C, and 200% strain). This work provided a low-cost and simple idea for the development of reliable iontronic equipment for human-computer interaction, motion sensing, and sustainable energy.


Asunto(s)
Elastómeros , Litio , Elasticidad , Electrólitos , Humanos , Iones , Sulfonamidas
5.
J Colloid Interface Sci ; 625: 446-456, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35738042

RESUMEN

HYPOTHESIS: With the rapid development of economy and global industrialization, the problem of air pollution has become a worldwide topic. The efficient filtration of airborne particulate matters (PMs) is critical for human health and environmental sustainability. EXPERIMENTS: Herein, self-supporting bio-based polyelectrolyte aerogels were prepared and acted as the advanced filters for efficient removal of PMs. The natural choline cation (Ch+) or the organic cation, 1-butyl-3-methylimidazolium (Bmim+), are introduced into alginate (Alg-) to form the polyelectrolytes of ChAlg or BmimAlg due to the electrostatic interaction. By the directional freeze-drying in liquid N2, hierarchically porous aerogels with mechanical robustness, flexibility and thermo-stability were prepared. This specific structure may permit the polluted air to pass adequately through the aerogel channels, which are conducive to intercept various PMs with different diameters. FINDINGS: As an example, the removal efficiency of ChAlg aerogels for PM10, PM2.5 and PM0.3 are respectively up to (99.24 ± 0.03)%, (99.22 ± 0.02)%, and (93.41 ± 0.22)% within 15 h durability test. One outstanding character lies in ensuring high removal efficiency, while achieving a good balance with the low pressure drop (10 Pa), which is driven by synergistic effect of passive trapping and electrostatic capture. Moreover, the polyelectrolyte aerogels exhibit excellent antimicrobial activity and regenerated capacity. These properties endow the aerogels of polyelectrolyte ChAlg or BmimAlg with remarkable potential as new advanced filters for masks and other personal protective equipment.


Asunto(s)
Filtración , Material Particulado , Humanos , Polielectrolitos , Porosidad , Regeneración
6.
Langmuir ; 38(15): 4713-4721, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35384674

RESUMEN

Water-in-water (W/W) emulsions are of interest for various applications due to their inherent biocompatibility, ultralow interfacial tensions, and large interface thickness. However, it is still challenging to prepare stable W/W emulsions with tailored phase architectures compared to oil-in-water (O/W) and water-in-oil (W/O) emulsions. Here, we report a multilayer-stabilized W/W emulsion composed of poly(ethylene glycol)/dextran in the presence of DNA strands. The W/W emulsions present onion-ring-like structures, which are interpreted by a nanofluid film model. Emulsion behavior, e.g., stability, interface tension, etc., can be controlled by the type of DNA (single or double strands), DNA concentration, and volume fraction of dispersed phase. Our findings could broaden the preparation of novel emulsions for potential applications in emulsion polymerization, new media of homogeneous catalysis, and DNA transportation of water-in-water media.


Asunto(s)
Polietilenglicoles , Agua , Emulsiones/química , Agua/química
7.
Langmuir ; 38(1): 343-351, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34939818

RESUMEN

Multistimuli-responsive fluorescent gelsbased small molecular gelator by supramolecular assembly, possessing excellent dynamic and reversible characteristic, have caused much concern. In this article, aggregation-induced emission-active fluorescence gels (AIE-gels) with chirality were developed by combining Cu nanoclusters (CuNCs) and natural amino acids, l-tryptophan (l-Trp) or d-Tryptophan (d-Trp). In DMSO/H2O mixed solvents, CuNCs can self-assemble to form intertwined fibersbased nanoparticles with numerous pores by introducing Zn2+. Fibers as second networks of heteronetwork structures are characterized with the participation of l-Trp or d-Trp for cross-linking to reinforce mechanical strength and chiral regulation of gel networks. Aggregation-induced emission enhancement (AIEE) of CuNCs endows the gels with excellent fluorescent properties by introducing solvents and gelation process. The fluorescent gels exhibit sufficient fluorescence intensity (FI) at -20 °C to -80 °C and possess sensitive responsibility including gel-sol transition and fluorescence behavior for stimuli of mechanical force, heating, pH, H2O2, and ethylene diamine tetraacetic acid (EDTA).


Asunto(s)
Aminoácidos , Peróxido de Hidrógeno , Fluorescencia , Geles , Solventes
8.
ACS Cent Sci ; 7(10): 1611-1621, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34729405

RESUMEN

With the rapid need for new kinds of portable and wearable electronics, we must look to develop flexible, small-volume, and high-performance supercapacitors that can be easily produced and stored in a sustainable way. An integrated system simultaneously converting recyclable energy to electricity and storing energy is sought after. Here we report photovoltaic energy conversion and storage integrated micro-supercapacitors (MSCs) with asymmetric, flexible, and all-solid-state performances constructed from thousands of close-packed upconverting nanoparticles (UCNPs) via an emulsion-based self-assembly process using oleic acid (OA)-capped upconverting nanoparticles. The carbonated-UCNPs supraparticles (CSPs) are further coated with polypyrrole (PPy) to improve their electrochemical performance. Such a design can develop CSPs@PPy as electrode materials with high gravimetric capacitance, 308.6 F g-1 at 0.6 A g-1. The fabricated MSCs exhibit excellent areal capacitance, C s = 21.8 mF cm-2 at 0.36 A cm-2 and E = 0.00684 mWh cm-2, and have superior flexibility and cycling ability. The MSC devices have a sensitive near-infrared ray (NIR) photoelectrical response capability, which can capture the NIR of sunlight to convert it into electrical energy and store the electric energy due to an excellent capacitive performance. We propose a method for multifunctional integration of energy conversion and storage, and provide future research directions and potential applications of self-powered flexible wearable photonic electronics.

9.
Chem Commun (Camb) ; 57(40): 4894-4897, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-33889897

RESUMEN

An oil-in-water nanoemulsion (O/W NE) is selected as the carrier to encapsulate hydrophobic dual-mode luminescent upconversion nanoparticles (UC NPs) and downconversion (DC) carbon quantum dots (CQDs) inside the oil droplets for forming water-based fluorescent inks. The NE inks conform well to the requirements of inkjet printing for anti-counterfeiting encryption applications.

10.
Langmuir ; 37(22): 6613-6622, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-33886319

RESUMEN

Amphiphilicity is an excellent physicochemical property, which is yet to be explored from traditional surfactants to nanoparticles. This article shows that the amphiphilicity of copper nanoclusters (CuNCs) can be readily tuned by electrostatic interactions with cationic surfactants and cetyltrimethylammonium cations (CTA+) with counterions Br-, Cl-, and C7H8O3S-. Due to the role of surface ligands, the complexes of glutathione-capped CuNCs (GSH-CuNCs) and the surfactants exhibit good amphiphilicity, which enables them to self-assemble like a molecular amphiphile. This could significantly increase the utility of metal nanoclusters in basic and applied research. As the concentration of the surfactant changes, the aggregates change from nanoparticles to network-like structures. After the formation of supramolecular self-assemblies by hydrophobic interactions, the enhancement of fluorescence intensity was observed, which can be ascribed to the suppression of intramolecular vibrations based on aggregation-induced emission (AIE) and combined with the compactness of GSH-CuNCs in self-assemblies. Our study provides a facile way to generate solid fluorescent materials with excellent fluorescence performance, which may find applications in light-emitting diodes (LEDs).

11.
Theranostics ; 10(15): 7015-7033, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32550919

RESUMEN

Background: Intervertebral disc (IVD) degeneration is a common degenerative disease that can lead to collapse or herniation of the nucleus pulposus (NP) and result in radiculopathy in patients. Methods: NP tissue and cells were isolated from patients and mice, and the expression profile of cortistatin (CST) was analysed. In addition, ageing of the NP was compared between 6-month-old WT and CST-knockout (CST-/-) mice. Furthermore, NP tissues and cells were cultured to validate the role of CST in TNF-α-induced IVD degeneration. Moreover, in vitro and in vivo experiments were performed to identify the potential role of CST in mitochondrial dysfunction, mitochondrial ROS generation and activation of the NLRP3 inflammasome during IVD degeneration. In addition, NF-κB signalling pathway activity was tested in NP tissues and cells from CST-/- mice. Results: The expression of CST in NP cells was diminished in the ageing- and TNF-α-induced IVD degeneration process. In addition, compared with WT mice, aged CST-/- mice displayed accelerated metabolic imbalance and enhanced apoptosis, and these mice showed a disorganized NP tissue structure. Moreover, TNF-α-mediated catabolism and apoptosis were alleviated by exogenous CST treatment. Furthermore, CST inhibited mitochondrial dysfunction in NP cells through IVD degeneration and suppressed activation of the NLRP3 inflammasome. In vitro and ex vivo experiments indicated that increased NF-κB pathway activity might have been associated with the IVD degeneration observed in CST-/- mice. Conclusion: This study suggests the role of CST in mitochondrial ROS and activation of the NLRP3 inflammasome in IVD degeneration, which might shed light on therapeutic targets for IVD degeneration.


Asunto(s)
Inflamasomas/efectos de los fármacos , Degeneración del Disco Intervertebral/prevención & control , Mitocondrias/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neuropéptidos/farmacología , Núcleo Pulposo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Adulto , Anciano , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamasomas/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Núcleo Pulposo/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Adulto Joven
12.
Chem Commun (Camb) ; 56(24): 3484-3487, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32162643

RESUMEN

We report DNA thermotropic liquid crystal (TLC) formation by positively charged catanionic surfactant bilayer vesicles. The properties of DNA TLCs were found to be manipulated by both the chemical structures of cationic and anionic surfactants and the DNA amount. Positively charged catanionic bilayer vesicles bond to negative DNA sites resulting in the transition from vesicles to long range ordered lamellar crystals of DNA-catanionic surfactants, as confirmed by cryo- and freeze-fracture (FF) TEM observations and small-angle X-ray scattering (SAXS) measurements.


Asunto(s)
ADN/química , Cristales Líquidos/química , Compuestos de Amonio Cuaternario/química , Tensoactivos/química
13.
J Colloid Interface Sci ; 563: 308-317, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31887695

RESUMEN

Synthetically colloidal clusters with new functions and well-controlled size distribution can in principle be constructed using colloidal particles. The building units could be integrated into dense-packed and desired structured with novel functions by means of an efficient strategy or binding patterns. Here we synthesized colloidal clusters of icosahedrons and long-range ordered face-centered cubes (FCCs) via emulsion self-assembly using fluorescence upconversion nanoparticles NaGdF4: Yb3+, Er3+ as building blocks. The icosahedrons and FCCs structure may generate spontaneously due to an entropy-driven process. The morphology and structure of colloidal clusters have noticeable transformation from icosahedron-like symmetry to FCC symmetry with the increasing size of clusters. Furthermore, the colloidal clusters could be decorated with cationic polyethyleneimine (PEI) via electrostatic interaction. When copper ions are added, the amino groups of PEI could coordinate with Cu2+ forming low toxic PEI-Cu2+ layers, which can further serve as energy receptors to quench upconversion fluorescence with 980 nm laser excitation. Our results reflect that the colloidal clusters not only can serve as a fluorescence platform of detection and analysis but also may represent advancement in the field of colloidal and interface sciences.

14.
Langmuir ; 35(51): 16869-16875, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31815492

RESUMEN

We report the fabrication of polymer nanogels with a pH-responsive core and a pH-sheddable shell and investigate the pH-dependent cell association of the pH-responsive polymer nanogels. The pH-responsive core composed of poly(2-diisopropylaminoethyl methacrylate) (PDPA) with a pKa ≈ 6.2 was synthesized by using polymerization in emulsion droplets. The pH-sheddable poly(ethylene glycol) (PEG) shell was coated on the amine-modified PDPA nanogels by an acid-degradable amide bond. The PEG shell is cleavable in response to the acidic tumor microenvironment, and subsequently, the surface charge of the nanogels can be reversed, which effectively enhances cellular association of these nanogels. The reported pH-responsive polymer nanogels provide a promising way for the better understanding of bio-nano interactions and potentially enrich the application of therapeutic delivery for cancer therapy.

15.
J Colloid Interface Sci ; 549: 89-97, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31022527

RESUMEN

HYPOTHESIS: Electrostatic self-assembly is used as a facile and convenient method to fabricate soft materials with synergetic novel properties. The structural transition of building blocks could easily lead to the formation of assembly structures with various morphologies. Hence, the self-assembly behavior of DNA/surfactant vesicles could be driven by DNA base pair (bp) variation and the stimulated responsiveness of vesicles. EXPERIMENTS: We report the bilayer transition of catanionic redox-switchable surfactant vesicles controlled by adding DNA with different chain lengths. Cryogenic transmission electron microscopy (cryo-TEM) was used to characterize the aggregation behavior of DNA and vesicles. FINDINGS: Cryo-TEM images revealed that short-chain inflexible DNA with 50 bp can act as anionic glue in the construction of catanionic bilayer vesicles to form tubular vesicles. Medium-long DNA of 250 bp adsorbs onto bilayer vesicles via electrostatic interactions to produce slightly thickened bilayer vesicles. Long-chain DNA with 2000 bp can be used as a building block to fabricate super-wall thickened (SWT) redox-responsive DNA bilayer vesicles with an average wall-thickness of 14.0 nm. The greater number of charges and more flexible of long-chain DNA may account for the construction of these SWT bilayer vesicles with high stability. In addition, the SWT DNA vesicles can even undergo structural rearrangement to generate over-sized bilayer vesicles by redox stimulation.


Asunto(s)
ADN/química , Tensoactivos/química , Adsorción , Aniones/química , Cationes/química , Estructura Molecular , Oxidación-Reducción , Transición de Fase , Electricidad Estática , Relación Estructura-Actividad , Propiedades de Superficie
16.
EBioMedicine ; 41: 556-570, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30826358

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a common degenerative disease, and tumor necrosis factor (TNF-α) is known to play a critical role in OA. Cortistatin (CST) is a neuropeptide discovered over 20  years ago, which plays a vital role in inflammatory reactions. However, it is unknown whether CST is involved in cartilage degeneration and OA development. METHODS: The interaction between CST and TNF-α receptors was investigated through Coimmunoprecipitation and Biotin-based solid-phase binding assay. Western blot, Real-time PCR, ELISA, immunofluorescence staining, nitrite production assay and DMMB assay of GAG were performed for the primary chondrocyte experiments. Surgically induced and spontaneous OA models were established and western blot, flow cytometry, Real-time PCR, ELISA, immunohistochemistry and fluorescence in vivo imaging were performed for in vivo experiments. FINDINGS: CST competitively bound to TNFR1 as well as TNFR2. CST suppressed proinflammatory function of TNF-α. Both spontaneous and surgically induced OA models indicated that deficiency of CST led to an accelerated OA-like phenotype, while exogenous CST attenuated OA development in vivo. Additionally, TNFR1- and TNFR2-knockout mice were used for analysis and indicated that TNFRs might be involved in the protective role of CST in OA. CST inhibited activation of the NF-κB signaling pathway in OA. INTERPRETATION: This study provides new insight into the pathogenesis and therapeutic strategy of cartilage degenerative diseases, including OA. FUND: The National Natural Science Foundation of China, the Natural Science Foundation of Shandong Province, Key Research and Development Projects of Shandong Province and the Cross-disciplinary Fund of Shandong University.


Asunto(s)
Neuropéptidos/metabolismo , Osteoartritis/patología , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Animales , Cartílago Articular/citología , Caspasa 3/metabolismo , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Humanos , Interleucina-1beta/sangre , Articulación de la Rodilla/patología , Metaloproteinasa 13 de la Matriz , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Neuropéptidos/genética , Neuropéptidos/farmacología , Neuropéptidos/uso terapéutico , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Unión Proteica , Receptores Tipo I de Factores de Necrosis Tumoral/química , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/química , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
17.
Langmuir ; 35(11): 4125-4132, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30773018

RESUMEN

By appropriate substitution, polyoxometalates (POMs) can be modified to be organic-inorganic supramolecules (OISMs) that are nonaqueous or water soluble and form aggregates in solution. Here, we report a new OISM, (TBA)3POM-PPCT, that can self-assemble to form bilayer vesicles controlled by Eu3+ in nonaqueous solution. Dynamic light scattering, transmission and scanning electron microscopy techniques, and atomic force microscopy clearly demonstrated the controllable formation of stable bilayer vesicles with an average hydrodynamic radius of about 510 nm. Because of the coordination between (TBA)3POM-PPCT and Eu3+, the stable vesicles possess fluorescence, determined by studying fluorescence spectra, and show highly selective response to Cu2+, allowing them to function as an ion-detecting platform to Cu2+.

18.
Adv Colloid Interface Sci ; 266: 1-20, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30776711

RESUMEN

Microgels are colloidal particles with crosslinked polymer networks and dimensions ranging from tens of nanometers to micrometers. Specifically, smart microgels are fascinating capable of responding to biological signals in vivo or remote triggers and making the possible for applications in biomaterials and biomedicines. Therefore, how to fundamentally design microgels is an urgent problem to be solved. In this review, we put forward our important fundamental opinions on how to devise the intelligent microgels for cancer therapy, biosensing and biological lubrication. We focus on the design ideas instead of specific implementation process by employing reverse synthesis analysis to programme the microgels at the original stage. Moreover, special insights will be, for the first time, as far as we know, dedicated to the particles completely composed of DNA or proteins into microgel systems. These are discussed in detail in this review. We expect to give readers a broad overview of the design criteria and practical methodologies of microgels according to the application fields, as well as to propel the further developments of highly interesting concepts and materials.


Asunto(s)
Materiales Biocompatibles/química , Nanomedicina/métodos , Animales , Materiales Biocompatibles/síntesis química , Diseño de Fármacos , Geles , Humanos
19.
ACS Appl Bio Mater ; 2(4): 1531-1541, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35026926

RESUMEN

In nature, the collective behaviors such as the growth of bacteria and the cooperation of insects possess great superiority and can create functional materials through diversified interactions for accomplishing complex tasks that cannot be performed by a single unit. Here we develop a new protocol for fabricating drug implants of hydrogels via the collective behavior of jagged magnetic microgels constructed by further coating Au nanorod@SiO2 with the thermo- and magnetic-responsive polymer shells, poly(N-isopropylacrylamide-co-magnetic ionic liquids). The magnetism of resultant macroscale hydrogels was enhanced nearly 5-fold because of the self-organization process, presenting new evidence for the essence of magnetism generation at a molecular level. By virtue of using a near-IR laser excitation stimulus, minimal cytotoxicity, and high biocompatibility, the implants of hydrogels not only have the potential to be local drug implants for sustaining drug release over 30 days but also achieve on-demand release for the enhanced therapeutic effect. The formation of microgel colloids provides an unprecedented strategy to rearrange molecular magnets and a unique potential and possibility for magnetism enhancement. This enhancement motivates an improvement of solid tumor therapy and also supplies a force for the real implementation of the on-demand drug treatment.

20.
J Colloid Interface Sci ; 539: 203-213, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30580176

RESUMEN

Self-assembly exploits a facile non-covalent way to couple structurally different building blocks for creating soft materials with synergetic novel properties and functions. Taking advantage of magneto-properties from magnetic surfactants as well as versatile functional ligand formed by carbon quantum dots with cysteine (cys-CQDs), the magnetic network materials were firstly constructed by using magnetic surfactants and cys-CQDs as self-assembly building blocks. Counterions of Br-, [GdCl3Br]-, [HoCl3Br]- in surfactants could control the morphology of magnetic network structures, and the concentration of magnetic surfactants manoeuvres a versatile scenario of self-assembly behavior. Self-assembly of cys-CQDs and CTAHo brought out a 10-fold increase in magnetic moment of CTAHo. The fluorescent property of carbon quantum dots firstly served as an effective indicator element to dissect the collective effect in self-assembly process. For the sake of capturing the target sequence-specific DNA molecules, in situ growth of Ag nanoparticles (AgNPs) upon the magnetic network structures was realized by synergetically electrostatic and coordinated interaction of carboxyl groups and Ag ions. The magnetic Ag self-assemblies anchored thiol-containing DNA, serving as a magnetic separation booster for the target sequence-specific DNA molecules under an applied magnetic field, which will bring light on designing magneto-functional self-assembly materials according to practical application requirements.


Asunto(s)
Carbono/química , Nanopartículas del Metal/química , Puntos Cuánticos/química , Plata/química , Conductividad Eléctrica , Humanos , Fenómenos Magnéticos , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA