Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 472: 134493, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38696960

RESUMEN

Environmental pollution caused by plastic waste has become global problem that needs to be considered urgently. In the pursuit of a circular plastic economy, biodegradation provides an attractive strategy for managing plastic wastes, whereas effective plastic-degrading microbes and enzymes are required. In this study, we report that Blastobotrys sp. G-9 isolated from discarded plastic in landfills is capable of depolymerizing polyurethanes (PU) and poly (butylene adipate-co-terephthalate) (PBAT). Strain G-9 degrades up to 60% of PU foam after 21 days of incubation at 28 â„ƒ by breaking down carbonyl groups via secretory hydrolase as confirmed by structural characterization of plastics and degradation products identification. Within the supernatant of strain G-9, we identify a novel cutinase BaCut1, belonging to the esterase family, that can reproduce the same effect. BaCut1 demonstrates efficient degradation toward commercial polyester plastics PU foam (0.5 mg enzyme/25 mg plastic) and agricultural film PBAT (0.5 mg enzyme/10 mg plastic) with 50% and 18% weight loss at 37 â„ƒ for 48 h, respectively. BaCut1 hydrolyzes PU into adipic acid as a major end-product with 42.9% recovery via ester bond cleavage, and visible biodegradation is also identified from PBAT, which is a beneficial feature for future recycling economy. Molecular docking, along with products distribution, elucidates a special substrate-binding modes of BaCut1 with plastic substrate analogue. BaCut1-mediated polyester plastic degradation offers an alternative approach for managing PU plastic wastes through possible bio-recycling.


Asunto(s)
Biodegradación Ambiental , Hidrolasas de Éster Carboxílico , Poliuretanos , Reciclaje , Poliuretanos/química , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/química , Burkholderiales/enzimología , Burkholderiales/metabolismo , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química , Plásticos/química , Plásticos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Poliésteres
2.
Biotechnol J ; 19(4): e2300723, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622797

RESUMEN

Polyurethane (PU) is a complex polymer synthesized from polyols and isocyanates. It contains urethane bonds that resist hydrolysis, which decreases the efficiency of biodegradation. In this study, we first expressed the amidase GatA250, and then, assessed the enzymatic characterization of GatA250 and its efficiency in degrading the polyester-PU. GatA250 degraded self-synthesized thermoplastic PU film and postconsumption foam with degradation efficiency of 8.17% and 4.29%, respectively. During the degradation, the film released 14.8 µm 4,4'-methylenedianiline (MDA), but 1,4-butanediol (BDO) and adipic acid (AA) were not released. Our findings indicated that GatA250 only cleaved urethane bonds in PU, and the degradation efficiency was extremely low. Hence, we introduced the cutinase LCC, which possesses hydrolytic activity on the ester bonds in PU, and then used both enzymes simultaneously to degrade the polyester-PU. The combined system (LCC-GatA250) had higher degradation efficiency for the degradation of PU film (42.2%) and foam (13.94%). The combined system also showed a 1.80 time increase in the production of the monomer MDA, and a 1.23 and 3.62 times increase in the production of AA and BDO, respectively, compared to their production recorded after treatment with only GatA250 or LCC. This study provides valuable insights into PU pollution control and also proposes applicable solutions to manage PU wastes through bio-recycling.


Asunto(s)
Compuestos de Anilina , Hidrolasas de Éster Carboxílico , Poliésteres , Poliuretanos , Poliésteres/química , Amidohidrolasas
3.
Appl Environ Microbiol ; 90(4): e0147723, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38445906

RESUMEN

Plastic degradation by biological systems emerges as a prospective avenue for addressing the pressing global concern of plastic waste accumulation. The intricate chemical compositions and diverse structural facets inherent to polyurethanes (PU) substantially increase the complexity associated with PU waste management. Despite the extensive research endeavors spanning over decades, most known enzymes exhibit a propensity for hydrolyzing waterborne PU dispersion (i.e., the commercial Impranil DLN-SD), with only a limited capacity for the degradation of bulky PU materials. Here, we report a novel cutinase (CpCut1) derived from Cladosporium sp. P7, which demonstrates remarkable efficiency in the degrading of various polyester-PU materials. After 12-h incubation at 55°C, CpCut1 was capable of degrading 40.5% and 20.6% of thermoplastic PU film and post-consumer foam, respectively, while achieving complete depolymerization of Impranil DLN-SD. Further analysis of the degradation intermediates suggested that the activity of CpCut1 primarily targeted the ester bonds within the PU soft segments. The versatile performance of CpCut1 against a spectrum of polyester-PU materials positions it as a promising candidate for the bio-recycling of waste plastics.IMPORTANCEPolyurethane (PU) has a complex chemical composition that frequently incorporates a variety of additives, which poses significant obstacles to biodegradability and recyclability. Recent advances have unveiled microbial degradation and enzymatic depolymerization as promising waste PU disposal strategies. In this study, we identified a gene encoding a cutinase from the PU-degrading fungus Cladosporium sp. P7, which allowed the expression, purification, and characterization of the recombinant enzyme CpCut1. Furthermore, this study identified the products derived from the CpCut1 catalyzed PU degradation and proposed its underlying mechanism. These findings highlight the potential of this newly discovered fungal cutinase as a remarkably efficient tool in the degradation of PU materials.


Asunto(s)
Hidrolasas de Éster Carboxílico , Cladosporium , Poliuretanos , Poliuretanos/química , Poliuretanos/metabolismo , Cladosporium/genética , Cladosporium/metabolismo , Estudios Prospectivos , Biodegradación Ambiental , Poliésteres/metabolismo , Plásticos
5.
Environ Res ; 249: 118468, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354881

RESUMEN

Microorganisms have the potential to be applied for the degradation or depolymerization of polyurethane (PU) and other plastic waste, which have attracted global attention. The appropriate strain or enzyme that can effectively degrade PU is the key to treat PU plastic wastes by biological methods. Here, a polyester PU-degrading bacterium Bacillus sp. YXP1 was isolated and identified from a plastic landfill. Three PU substrates with increasing structure complexities, including Impranil DLN, poly (1,4-butylene adipate)-based PU (PBA-PU), and polyester PU foam, were used to evaluate the degradation capacity of Bacillus sp. YXP1. Under optimal conditions, strain YXP1 could completely degrade 0.5% Impranil DLN within 7 days. After 30 days, the weight loss of polyester PU foam by strain YXP1 was as high as 42.1%. In addition, PBA-PU was applied for degradation pathway analysis due to its clear composition and chemical structure. Five degradation intermediates of PBA-PU were identified, including 4,4'-methylenedianiline (MDA), 1,4-butanediol, adipic acid, and two MDA derivates, indicating that strain YXP1 could depolymerize PBA-PU by the hydrolysis of ester and urethane bonds. Furthermore, the extracellular enzymes produced by strain YXP1 could hydrolyze PBA-PU to generate MDA. Together, this study provides a potential bacterium for the biological treatment of PU plastic wastes and for the mining of functional enzymes.


Asunto(s)
Bacillus , Biodegradación Ambiental , Poliuretanos , Poliuretanos/química , Bacillus/metabolismo , Bacillus/aislamiento & purificación , Bacillus/genética , Poliésteres/metabolismo
6.
Food Chem Toxicol ; 185: 114474, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301992

RESUMEN

Biodegradable plastics, were considered environmentally friendly, may produce more microplastic particles (MPs) within the same period and exert more pronounced adverse effects on human health than traditional non-biodegradable plastics. Thus, this study investigated the changes of two kinds of biodegradable MPs from different sources in the digestive tract by using simulated digestion and fermentation models in vitro, with particle size, scanning electron microscopy (SEM) and gel permeation chromatography (GPC) analysis, and their implications on the gut microbiota were detected by full-length bacterial 16S rRNA gene amplicon sequencing. Poly(ε-caprolactone) (PCL) MPs exhibited stability in the upper gastrointestinal tract, while poly(lactic acid) (PLA) MPs were degraded beginning in the small intestine digestion phase. Both PCL and PLA MPs were degraded and oligomerized during colonic fermentation. Furthermore, this study highlighted the disturbance of the gut microbiota induced by MPs and their oligomers. PCL and PLA MPs significantly changed the composition and reduced the α-diversity of the gut microbiota. PCL and PLA MPs exhibited the same inhibitory effects on key probiotics such as Bifidobacterium, Lactobacillus, Faecalibacterium, Limosilactobacillus, Blautia, Romboutsia, and Ruminococcus, which highlighted the potential hazards of these materials for human health. In conclusion, this study illuminated the potential biodegradation of MPs through gastrointestinal digestion and the complex interplay between MPs and the gut microbiota. The degradable characteristic of biodegradable plastics may cause more MPs and greater harm to human health.


Asunto(s)
Plásticos Biodegradables , Microbioma Gastrointestinal , Humanos , Microplásticos , ARN Ribosómico 16S , Poliésteres , Digestión
7.
J Agric Food Chem ; 72(3): 1651-1659, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38206807

RESUMEN

Monitoring intracellular pyruvate is useful for the exploration of fundamental metabolism and for guiding the construction of yeast cell factories for chemical production. Here, we employed a genetically encoded fluorescent Pyronic biosensor to light up the pyruvate metabolic state in the cytoplasm, nucleus, and mitochondria of Saccharomyces cerevisiae BY4741. A strong correlation was observed between the pyruvate fluctuation in mitochondria and cytoplasm when exposed to different metabolites. Further metabolic analysis of pyruvate uptake and glycolytic dynamics showed that glucose and fructose dose-dependently activated cytoplasmic pyruvate levels more effectively than direct exposure to pyruvate. Meanwhile, the Pyronic biosensor could visually distinguish phenotypes of the wild-type S. cerevisiae BY4741 and the pyruvate-hyperproducing S. cerevisiae TAM at a single-cell resolution, having the potential for high-throughput screening. Overall, Pyronic biosensors targeting different suborganelles contribute to mapping and studying the central carbon metabolism in-depth and guide the design and construction of yeast cell factories.


Asunto(s)
Técnicas Biosensibles , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Glucólisis , Ácido Pirúvico/metabolismo
8.
Microb Biotechnol ; 17(1): e14301, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37351580

RESUMEN

Palmitoleic acid (POA; C16:1) is an essential high-value ω-7-conjugated fatty acid with beneficial bioactivities and potential applications in the nutraceutical and pharmaceutical industries. Previously, the oleaginous yeast Scheffersomyces segobiensis DSM27193 has been identified as a promising production host as an alternative for POA extraction from plant or animal sources. Here, the POA-producing capacity of this host was further expanded by optimizing the fermentation process and molecular strain engineering. Specifically, a dual fermentation strategy (O-S dynamic regulation strategy) focused on the substrate and dissolved oxygen concentration was designed to eliminate ethanol and pyruvate accumulation during fermentation. Key genes influencing POA production, such as jen, dgat, ole were identified on the transcriptional level and were subsequently over-expressed. Furthermore, the phosphoketolase (Xpk)/phosphotransacetylase (Pta) pathway was introduced to improve the yield of the precursor acetyl-CoA from glucose. The resulting cell factory SS-12 produced 7.3 g/L of POA, corresponding to an 11-fold increase compared to the wild type, presenting the highest POA titre reported using oleaginous yeast to date. An economic evaluation based on the raw materials, utilities and facility-dependent costs showed that microbial POA production using S. segobiensis can supersede the current extraction method from plant oil and marine fish. This study reports the construction of a promising cell factory and an effective microbial fermentation strategy for commercial POA production.


Asunto(s)
Ácidos Grasos Monoinsaturados , Ingeniería Metabólica , Saccharomycetales , Ingeniería Metabólica/métodos , Levaduras
9.
Angew Chem Int Ed Engl ; 63(1): e202313633, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37880836

RESUMEN

Biotechnological recycling offers a promising solution to address the environmental concerns associated with waste plastics, particularly polyethylene terephthalate (PET), widely utilized in packaging materials and textiles. To advance the development of a bio-based circular plastic economy, innovative upcycling strategies capable of generating higher-value products are needed. In this study, we enhanced the enzymatic depolymerization of waste PET by incorporating highly concentrated calcium ions (up to 1 m) to the hydrolytic reaction catalyzed by the best currently known enzyme LCCICCG . The presence of calcium ions not only improved the thermal stability and activity of the biocatalyst but also significantly reduced the consumption of base required to maintain optimal pH levels. Employing optimized conditions at 80 °C for 12 h, we successfully converted ≈84 % of the waste PET (200 g L-1 ) into solid hydrated calcium terephthalate (CaTP ⋅ 3H2 O) as the primary product instead of soluble terephthalate salt. CaTP ⋅ 3H2 O was easily purified and employed as a raw material for battery electrode production, exhibiting an initial reversible specific capacity of 164.2 mAh g-1 . Through techno-economic analysis, we conclusively demonstrated that the one-pot biocatalysis-based synthesis of CaTP is a superior PET upcycling strategy than the secondary synthesis method employing recycled terephthalic acid.

10.
J Sci Food Agric ; 104(4): 2156-2164, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37926439

RESUMEN

BACKGROUND: Yeast biomass, encompassing fatty acids, terpenoids, vitamins, antioxidants, enzymes, and other bioactive compounds have been extensively utilized in food-related fields. The safety and potential bioactivities of Scheffersomyces segobiensis DSM 27193, an oleaginous yeast strain, are unclear. RESULTS: Scheffersomyces segobiensis DSM 27193 accumulated large palmitoleic acid (POA) levels (43.4 g kg-1 biomass) according to the results of whole-cell components. We annotated the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and predicted the categories and host of the pathogen-host interactions (PHI) genes in S. segobiensis DSM 27193. However, S. segobiensis DSM 27193 did not exert toxic effects in mice. Administration of S. segobiensis DSM 27193 led to substantial weight reduction by diminishing food intake in an obesity mouse model. Additionally, it reversed hepatic steatosis and adipose tissue hypertrophy, and improved abnormalities in serum biochemical profiles such as triglyceride, total cholesterol, low-density lipoprotein cholesterol, lipopolysaccharide, tumor necrosis factor-α, interleukin-1ß, and interleukin-6. CONCLUSION: This study is the first to illustrate the safety and effects of S. segobiensis DSM 27193 against obesity and offers a scientific rationale for its application in functional food supplements. © 2023 Society of Chemical Industry.


Asunto(s)
Ácidos Grasos Monoinsaturados , Hígado Graso , Saccharomycetales , Animales , Ratones , Hígado Graso/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Tejido Adiposo , Hipertrofia/patología , Colesterol , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Hígado
11.
Trends Biotechnol ; 42(6): 677-679, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38103978

RESUMEN

Biofilm-based fermentation has great potential, as it possesses inherent characteristics such as self-immobilization, high resistance to reactants, and long-term activity. This forum focuses on research targets for promoting biofilm engineering to maximize the beneficial features of biofilms and to effectively utilize them in biofilm-mediated fermentation.


Asunto(s)
Biopelículas , Fermentación , Biopelículas/crecimiento & desarrollo , Reactores Biológicos/microbiología
12.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003625

RESUMEN

Due to the extensive utilization of poly (ethylene terephthalate) (PET), a significant amount of PET waste has been discharged into the environment, endangering both human health and the ecology. As an eco-friendly approach to PET waste treatment, biodegradation is dependent on efficient strains and enzymes. In this study, a screening method was first established using polycaprolactone (PCL) and PET nanoparticles as substrates. A PET-degrading strain YX8 was isolated from the surface of PET waste. Based on the phylogenetic analysis of 16S rRNA and gyrA genes, this strain was identified as Bacillus safensis. Strain YX8 demonstrated the capability to degrade PET nanoparticles, resulting in the production of terephthalic acid (TPA), mono (2-hydroxyethyl) terephthalic acid (MHET), and bis (2-hydroxyethyl) terephthalic acid (BHET). Erosion spots on the PET film were observed after incubation with strain YX8. Furthermore, the extracellular enzymes produced by strain YX8 exhibited the ability to form a clear zone on the PCL plate and to hydrolyze PET nanoparticles to generate TPA, MHET, and BHET. This work developed a method for the isolation of PET-degrading microorganisms and provides new strain resources for PET degradation and for the mining of functional enzymes.


Asunto(s)
Etilenos , Tereftalatos Polietilenos , Humanos , Tereftalatos Polietilenos/química , Filogenia , ARN Ribosómico 16S/genética , Biodegradación Ambiental
13.
Environ Res ; 238(Pt 2): 117240, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37783328

RESUMEN

Bis (2-hydroxyethyl) terephthalate (BHET) is one of the main compounds produced by enzymatic hydrolysis or chemical depolymerization of polyethylene terephthalate (PET). However, the lack of understanding on BHET microbial metabolism is a main factor limiting the bio-upcycling of PET. In this study, BHET-degrading strains of Rhodococcus biphenylivorans GA1 and Burkholderia sp. EG1 were isolated and identified, which can grow with BHET as the sole carbon source. Furthermore, a novel esterase gene betH was cloned from strain GA1, which encodes a BHET hydrolyzing esterase with the highest activity at 30 °C and pH 7.0. In addition, the co-culture containing strain GA1 and strain EG1 could completely degrade high concentration of BHET, eliminating the inhibition on strain GA1 caused by the accumulation of intermediate metabolite ethylene glycol (EG). This work will provide potential strains and a feasible strategy for PET bio-upcycling.


Asunto(s)
Ácidos Ftálicos , Rhodococcus , Esterasas , Ácidos Ftálicos/metabolismo , Hidrólisis , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Rhodococcus/metabolismo
14.
Chemosphere ; 345: 140546, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890795

RESUMEN

Conversion of plastic waste into porous carbon for CO2 capture is an attractive approach to solve the carbon emission and plastic pollution problems, simultaneously. However, the previous studies are limited to the utilization of single PET plastic. The conversion of mixed plastic waste (MPW), which is of more practical significance, is seldom reported. In this study, mixed plastic waste was converted into porous carbon materials for CO2 capture through cascading autogenic pressure carbonization (APC) and chemical activation. The carbon yield of 56% was achieved through APC of MPW. The activator (KOH) dosage had significant effects on the structure and properties of the prepared porous carbons. Porous carbon prepared with KOH/C ratio of 4 had the largest micropore area and the maximum CO2 adsorption was 2.7 mmol g-1 at 298 K and 1 bar. The experimental data were well fitted to the pesudo first-order kinetic model. The MPW derived porous carbon exhibited not only high CO2 uptake capacity, but also fast adsorption rate, good selectivity of CO2 over N2 and good cyclic stability, which could be regarded as a promising adsorbent for CO2 adsorption.


Asunto(s)
Dióxido de Carbono , Carbono , Cinética , Adsorción , Porosidad
15.
Molecules ; 28(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37894689

RESUMEN

Dextran, a variant of α-glucan with a significant proportion of α-(1,6) bonds, exhibits remarkable solubility in water. Nonetheless, the precipitation of dextran has been observed in injection vials during storage. The present study aimed to establish a technique for generating insoluble dextran and analyze its structural properties. Additionally, the potential for positively ionizing IS-dextran with polyethyleneimine was explored, with the ultimate objective of utilizing IS-dextran-PEI as a promising support for enzyme immobilization. As a result, IS-dextran was obtained by the process of slow evaporation with an average molecular weight of 6555 Da and a yield exceeding 60%. The calculated crystallinity of IS-dextran, which reaches 93.62%, is indicative of its irregular and dense structure, thereby accounting for its water insolubility. Furthermore, positive charge modification of IS-dextran, coupled with the incorporation of epichlorohydrin, resulted in all zeta potentials of IS-dextran-PEIs exceeding 30 mV, making it a promising supporting factor for enzyme immobilization.

16.
Bioresour Technol ; 388: 129716, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37689118

RESUMEN

Nitrate plays a crucial role in the high-efficient fermentation production of rhamnolipids (RLs). However, the underlying mechanism remains unclear. Firstly, by knocking out the restriction endonuclease PaeKI and utilizatiing the endogenous CRISPR-Cas-mediated single-plasmid recombineering system, a genome editing system for P. aeruginosa KT1115 has been established. Secondly, an engineered strain KT1115ΔpaeKIΔnirS was obtained with a 87% of reduction in nitric oxide (NO) accumulation and a 93% of reduction in RLs production, revealing the crucial role of NO signaling molecule produced from nitrate metabolism in RLs production. Finally, by combining metabolic engineering of the nitrate metabolism pathway with nitrogen feeding, a new two-stage fermentation process was developed. The fermentation production period was reduced from 168 h to 120 h while achieving a high yield of 0.8 g/g, and the average productivity increased by 55%. In all, this study provides a novel insights in the RLs biosynthesis and fermentation control strategy.

17.
Biotechnol Bioeng ; 120(12): 3612-3621, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37661795

RESUMEN

Beta-elemene, a class of sesquiterpene derived from the Chinese medicinal herb Curcuma wenyujin, is widely used in clinical medicine due to its broad-spectrum antitumor activity. However, the unsustainable plant extraction prompted the search for environmentally friendly strategies for ß-elemene production. In this study, we designed a Yarrowia lipolytica cell factory that can continuously produce germacrene A, which is further converted into ß-elemene with 100% yield through a Cope rearrangement reaction by shifting the temperature to 250°C. First, the productivity of four plant-derived germacrene A synthases was evaluated. After that, the metabolic flux of the precursor to germacrene A was maximized by optimizing the endogenous mevalonate pathway, inhibiting the competing squalene pathway, and expressing germacrene A synthase gene in multiple copies. Finally, the most promising strain achieved the highest ß-elemene titer reported to date with 5.08 g/L. This sustainable and green method has the potential for industrial ß-elemene production.


Asunto(s)
Sesquiterpenos , Yarrowia , Extractos Vegetales , Sesquiterpenos/metabolismo , Sesquiterpenos de Germacrano/metabolismo , Yarrowia/metabolismo , Ingeniería Metabólica
18.
Adv Mater ; 35(47): e2304686, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37540488

RESUMEN

Solid-state lithium-metal batteries constructed by in-situ solidification of cyclic ether are considered to be a critical strategy for the next generation of solid-state batteries with high energy density and safety. However, the poor thermal/electrochemical stability of linear polyethers and severe interfacial reactions limit its further development. Herein, in-situ ring-opening hybrid crosslinked polymerization is proposed for organic/inorganic hybrid polymer electrolyte (HCPE) with superior ionic conductivity of 2.22 × 10-3 S cm-1 at 30 °C, ultrahigh Li+ transference number of 0.88, and wide electrochemical stability window of 5.2 V. These allow highly stable lithium stripping/plating cycling for over 1000 h at 1 mA cm-2 , which also reveal a well-defined interfacial stabilization mechanism. Thus, HCPE endows assembled solid-state lithium-metal batteries with excellent long-cycle performance over 600 cycles at 2 C (25 °C) and superior capacity retention of 92.1%. More importantly, the proposed noncombustible HCPE opens up a new frontier to promote the practical application of high safety and high energy density solid-state batteries via in-situ solidification.

19.
Sci Total Environ ; 889: 164311, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37211100

RESUMEN

Microbial fuel cells (MFCs) have been considered a promising technology for Cr6+ removal, but they are limited by Cr6+-reducing biocathodes with low extracellular electron transfer (EET) and poor microbial activity. In this study, three kinds of nano-FeS hybridized electrode biofilms, obtained through synchronous biosynthesis (Sy-FeS), sequential biosynthesis (Se-FeS) and cathode biosynthesis (Ca-FeS), were applied as biocathodes for Cr6+ removal in MFCs. The Ca-FeS biocathode exhibited the best performance due to the superior properties of biogenic nano-FeS (e.g., more synthetic amount, smaller particle size, better dispersion). The MFC with the Ca-FeS biocathode achieved the highest power density (42.08 ± 1.42 mW/m2) and Cr6+ removal efficiency (99.18 ± 0.1 %), which were 1.42 and 2.08 times as high as those of the MFC with the normal biocathode, respectively. The synergistic effects of nano-FeS and microorganisms enhanced the bioelectrochemical reduction of Cr6+, first realizing deep reduction of Cr6+ to Cr0 in biocathode MFCs. This significantly alleviated the cathode passivation caused by Cr3+ deposition. In addition, the hybridized nano-FeS as "armor" layers protected the microbes from toxic attack by Cr6+, improving the biofilm physiological activity and extracellular polymeric substances (EPS) secretion. The hybridized nano-FeS as "electron bridges" facilitated the microbial community to form a balanced, stable and syntrophic ecological structure. This study proposes a novel strategy through the cathode in-situ biosynthesis of nanomaterials to fabricate hybridized electrode biofilms with enhanced EET and microbial activity for toxic pollutant treatment in bioelectrochemical systems.


Asunto(s)
Fuentes de Energía Bioeléctrica , Nanopartículas , Cromo/química , Electrodos
20.
Sheng Wu Gong Cheng Xue Bao ; 39(5): 1912-1929, 2023 May 25.
Artículo en Chino | MEDLINE | ID: mdl-37212221

RESUMEN

With the escalation of plastic bans and restrictions, bio-based plastics, represented by polylactic acid (PLA), have become a major alternative to traditional plastics in the current market and are unanimously regarded as having potential for development. However, there are still several misconceptions about bio-based plastics, whose complete degradation requires specific composting conditions. Bio-based plastics might be slow to degrade when it is released into the natural environment. They might also be harmful to humans, biodiversity and ecosystem function as traditional petroleum-based plastics do. In recent years, with the increasing production capacity and market size of PLA plastics in China, there is an urgent need to investigate and further strengthen the management of the life cycle of PLA and other bio-based plastics. In particular, the in-situ biodegradability and recycling of hard-to-recycle bio-based plastics in the ecological environment should be focused. This review introduces the characteristics, synthesis and commercialization of PLA plastics, summarizes the current research progress of microbial and enzymatic degradation of PLA plastics, and discusses their biodegradation mechanisms. Moreover, two bio-disposal methods against PLA plastic waste, including microbial in-situ treatment and enzymatic closed-loop recycling, are proposed. At last, the prospects and trends for the development of PLA plastics are presented.


Asunto(s)
Plásticos Biodegradables , Ecosistema , Humanos , Poliésteres , Biodegradación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA