Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Int J Biol Macromol ; 277(Pt 2): 134229, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39089548

RESUMEN

Currently, there is no known cause for ulcerative colitis (UC), an inflammatory bowel disease that is difficult to treat. This assay aimed to investigate the protective effects and mechanisms of Dendrobium officinale polysaccharide (DOP) in mice with acute UC induced by dextran sulphate sodium (DSS). We found that DOP could improve weight loss, decrease the disease activity index (DAI), and regulate the release of interleukin 2 (IL-2), IL-4, IL-6, and IL-10 in DSS-induced acute UC mice. Additionally, DOP preserved the integrity of the intestinal barrier in UC mice by increasing goblet cell density and maintaining tight junctions. DOP significantly enhanced total antioxidant capacity (T-AOC), and reduced glutathione (GSH), nitric oxide (NO), and malondialdehyde (MDA) levels in the bloodstream. In terms of serum biochemistry, DOP markedly elevated levels of bilirubin (BIL), alkaline phosphatase (ALP), total bile acid (TBA), creatinine (Crea), and creative kinase isoenzyme (CKMB). Furthermore, DOP increased the relative abundance of Lactobacillales. DOP also improved intestinal health and stimulated the synthesis of potent anti-inflammatory and antiviral substances by regulating the metabolism of purines, prostaglandins, and leukotrienes. Therefore, DOP can be considered a functional dietary supplement for the treatment of UC, as it improves the condition of DSS-induced UC mice.


Asunto(s)
Colitis Ulcerosa , Dendrobium , Sulfato de Dextran , Metaboloma , Polisacáridos , Animales , Dendrobium/química , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Polisacáridos/farmacología , Polisacáridos/química , Sulfato de Dextran/efectos adversos , Ratones , Metaboloma/efectos de los fármacos , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Citocinas/metabolismo , Antioxidantes/farmacología , Modelos Animales de Enfermedad
2.
BioTech (Basel) ; 13(3)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39189210

RESUMEN

The black soldier fly is a valuable resource insect capable of transforming organic waste while producing antimicrobial peptides (AMPs). The inhibition zone assay (IZA) is a method used to demonstrate the antimicrobial activity of AMPs. This study aimed to examine the experimental principles and establish a standardized IZA method. Results indicated that the AMPs extract consisted of proteins ranging in molecular weights from 0 to 40 kDa. The AMPs diffused radially on an agar plate through an Oxford cup. The diffusion radius was influenced by the concentration and volume of the AMPs but ultimately determined by the mass of the AMPs. The swabbing method was found to be effective for inoculating bacteria on the agar plate. Among the conditions tested, the plate nutrient concentration was the most sensitive factor for the IZA, followed by bacterial concentration and incubation time. Optimal conditions for the IZA included a nutrient plate of 0.5× TSA, a bacterial concentration of 106 CFU/mL, and an incubation time of 12 h, with oxytetracycline (OTC) at 0.01 mg/mL serving as the positive control. The antimicrobial-specific activity of AMPs could be standardized by the ratio of inhibition zone diameters between AMPs and OTC. These findings contribute to the standardization of the IZA method for profiling the antimicrobial activity of AMPs.

3.
Microorganisms ; 12(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065263

RESUMEN

Subgroup J avian leukosis virus (ALV-J) is a major pathogen in poultry, causing substantial economic losses to the poultry industry worldwide. Exosomal small RNAs derived from virus-infected cells or biological fluids can serve as viral transmission vectors. However, the role and mechanism of exosomal miRNA in ALV-J infection are unclear. In this study, we demonstrated that exosomal microRNA-7-25207 (miR-7-25207) could increase the titers of ALV-J. Exosomes isolated from ALV-J-infected DF-1 cells (Exo-ALV-J) contained partial viral proteins from ALV-J and could transmit the infection to uninfected DF-1 cells, leading to productive infection. Additionally, the RNA expression profile of exosomes was altered following ALV-J infection. miRNA analysis revealed that the expression of exosomal miR-7-25207 increased. Overexpression of miR-7-25207 significantly increased the titers of ALV-J in transfected cells. Furthermore, miR-7-25207 directly suppressed the expression of Akt and PRC1. Akt, in turn, directly inhibited CyclinQ1 expression, while PRC1 directly interfered with YAF2 expression. In conclusion, ALV-J infection activates the expression of miR-7-25207, which is subsequently delivered via exosomes to uninfected cells, increasing ALV-J titers by targeting Akt-CyclinQ1 and PRC1-YAF2 dual pathways. These findings suggest that exosomal miR-7-25207 may serve as a potential biomarker for clinical parameters in ALV-J infection.

4.
Biology (Basel) ; 13(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39056727

RESUMEN

With the increasing prominence of the global energy problem, socioeconomic activities have been seriously affected. Biofuels, as a renewable source of energy, are of great significance in promoting sustainable development. In this study, batch anaerobic digestion (AD) of frass (swine manure after bioconversion by black soldier fly larvae) and co-digestion with corn straw after the addition of iron oxide (Fe3O4) nanoparticles is investigated, as well as the start-up period without inoculation. The biochemical methane potential of pure frass was obtained using blank 1 group and after the addition of various sizes of Fe3O4 nanoparticles for 30 days period, and similarly, the digestion of frass with straw (blank 2) and after the addition of various sizes of Fe3O4 nanoparticles for 61 days period. The results showed that the average gas production was 209.43 mL/gVS, 197.68 mL/gVS, 151.85 mL/gVS, and 238.15 mL/gVS for the blank, ~176 nm, ~164 nm, and ~184 nm, respectively. The average gas production of frass with straw (blank 2) was 261.64 mL/gVS, 259.62 mL/gVS, 241.51 mL/gVS, and 285.98 mL/gVS for blank 2, ~176 nm, ~164 nm, and ~184 nm, respectively. Meanwhile, the accumulated methane production of the ~184 nm group was 2312.98 mL and 10,952.96 mL, respectively, which significantly increased the biogas production compared to the other groups. The methanogenic results of the frass (30 days) indicated that Methanocorpusculum, Methanosarcina, and Methanomassiliicoccus are the important methanogenic species in the AD reactor, while the microbial diversity of the ~184 nm group was optimal, which may be the reason for the high gas production of ~184 nm.

5.
Int Immunopharmacol ; 140: 112816, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39083930

RESUMEN

Vaccines represent a significant milestone in the history of human medical science and serve as the primary means for controlling infectious diseases. In recent years, the geographical distribution of Japanese encephalitis viruses (JEV) of various genotypes has become increasingly complex, which provides a rationale for the development of safer and more effective vaccines. The advent of subunit and nucleic acid vaccines, especially propelled by advancements in genetic engineering since the 1980s, has accelerated the application of novel adjuvants. These novel vaccine adjuvants have diversified into toll-like receptor (TLR) agonists, complex adjuvants, nanoparticles and so on. However, the efficacy of adjuvant combinations can vary depending on the host system, disease model, or vaccine formulation, sometimes resulting in competitive or counteractive effects. In our previous study, we constructed a pJME-LC3 chimeric DNA vaccine aimed at inducing an immune response through autophagy induction. Building on this, we investigated the impact of the TLR7/8 agonist imiquimod (IMQ) and the TLR9 agonist CpG ODN 1826 as adjuvants on the immunogenicity of the Japanese encephalitis chimeric DNA vaccine. Our findings indicate that the combination of the pJME-LC3 vaccine with IMQ and CpG ODN 1826 adjuvants enhanced the innate immune response, promoting the maturation and activation of antigen-presenting cells in the early immune response. Furthermore, it played a regulatory and optimizing role in subsequent antigen-specific immune responses, resulting in effective cellular and humoral immunity and providing prolonged immune protection. The synergistic effect of IMQ and CpG ODN 1826 as adjuvants offers a novel approach for the development of Japanese encephalitis nucleic acid vaccines.


Asunto(s)
Adyuvantes Inmunológicos , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Imiquimod , Vacunas contra la Encefalitis Japonesa , Oligodesoxirribonucleótidos , Receptor Toll-Like 7 , Receptor Toll-Like 9 , Vacunas de ADN , Encefalitis Japonesa/prevención & control , Encefalitis Japonesa/inmunología , Oligodesoxirribonucleótidos/farmacología , Oligodesoxirribonucleótidos/administración & dosificación , Animales , Adyuvantes Inmunológicos/farmacología , Virus de la Encefalitis Japonesa (Especie)/inmunología , Vacunas de ADN/inmunología , Receptor Toll-Like 9/agonistas , Ratones , Vacunas contra la Encefalitis Japonesa/inmunología , Receptor Toll-Like 7/agonistas , Femenino , Receptor Toll-Like 8/agonistas , Humanos , Adyuvantes de Vacunas/farmacología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
6.
Poult Sci ; 103(8): 103898, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936216

RESUMEN

Exosome-mediated horizontal and vertical transmission of subgroup J avian leukosis virus (ALV-J) in poultry flocks can lead to growth inhibition and severe immunosuppression. However, there are few reports on the early infection of chicken embryonic stem cells (cESCs) with ALV-J. In this study, we confirmed that early infection with ALV-J can accelerate the differentiation of cESCs and promote the secretion of exosomes. To investigate the modulation strategy of ALV-J in cESCs, circRNA sequencing was performed for further analysis. A total of 305 differentially expressed circRNAs (DECs) were obtained, including 71 upregulated DECs. Circ-CCDC7 was found to be the most upregulated DEC and was assessed by qRT-PCR, with the result consistent with the result of circRNA-seq. Based on qRT-PCR, gga-miR-6568-3p was found to be the target of the top 3 DECs, including circ-CCDC7, and the stem cell marker gene Pax7 was identified as the target gene of gga-miR-6568-3p. This study demonstrated that exosomal circ-CCDC7/gga-miR-6568-3p/Pax7 accelerates the differentiation of cESCs after early infection with ALV-J.


Asunto(s)
Virus de la Leucosis Aviar , Leucosis Aviar , Diferenciación Celular , Pollos , Exosomas , MicroARNs , ARN Circular , Animales , Virus de la Leucosis Aviar/fisiología , Exosomas/metabolismo , Exosomas/virología , Exosomas/genética , ARN Circular/genética , ARN Circular/metabolismo , Leucosis Aviar/virología , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/genética , Células Madre Embrionarias/virología , Células Madre Embrionarias/fisiología , Embrión de Pollo , Proteínas Aviares/genética , Proteínas Aviares/metabolismo
7.
Methods Mol Biol ; 2820: 29-39, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38941012

RESUMEN

Soil metaproteomics could explore the proteins involved in life activities and their abundance in the soils to overcome the difficulty in pure cultures of soil microorganisms and the limitations of proteomics of pure cultures. However, the complexity and heterogeneity of soil composition, the low abundance of soil proteins, and the presence of massive interfering substances (including humic compounds) generally lead to an extremely low extraction efficiency of soil proteins. Therefore, the efficient extraction of soil proteins is a prerequisite and bottleneck problem in soil metaproteomics. In this chapter, a soil protein extraction method suitable for most types of soils with low cost and enabling simple operation (about 150 µg protein can be extracted from 5.0 g soil) is described. The quantity and purity of the extracted soil proteins could meet the requirements for further analysis using routine mass spectrometry-based proteomics.


Asunto(s)
Proteómica , Suelo , Suelo/química , Proteómica/métodos , Proteínas/aislamiento & purificación , Proteínas/análisis , Microbiología del Suelo , Espectrometría de Masas/métodos
9.
J Ovarian Res ; 17(1): 89, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671471

RESUMEN

BACKGROUND: Yu Linzhu (YLZ) is a classical Chinese traditional formula, which has been used for more than 600 years to regulate menstruation to help pregnancy. However, the mechanism of modern scientific action of YLZ needs to be further studied. METHODS: Thirty SD female rats were divided into three groups to prepare the blank serum and drug-containing serum, and then using UHPLC-QE-MS to identify the ingredients of YLZ and its drug-containing serum. Twenty-four SD female rats were divided into four groups, except the control group, 4-vinylcyclohexene dicycloxide (VCD) was intraperitoneally injected to establish a primary ovarian insufficiency (POI) model of all groups. Using vaginal smear to show that the estrous cycle of rats was disturbed after modeling, indicates that the POI model was successfully established. The ELISA test was used to measure the follicle-stimulating hormone (FSH), estradiol (E2), and anti-Mullerian hormone (AMH) levels in the serum of rats. HE stain was used to assess the morphology of ovarian tissue. The localization and relative expression levels of CX43 protein were detected by tissue immunofluorescence. Primary ovarian granulosa cells (GCs) were identified by cellular immunofluorescence. CCK8 was used to screen time and concentration of drug-containing serum and evaluate the proliferation effect of YLZ on VCD-induced GCs. ATP kit and Seahorse XFe24 were used to detect energy production and real-time glycolytic metabolism rate of GCs. mRNA and protein expression levels of HIF1α, CX43, PEK, LDH, HK1 were detected by RT-PCR and WB. RESULTS: UHPLC-QE-MS found 1702 ingredients of YLZ and 80 constituents migrating to blood. YLZ reduced the FSH while increasing the AMH and E2 levels. In ovarian tissues, YLZ improved ovarian morphology, follicle development, and the relative expression of CX43. In vitro studies, we found that YLZ increased the proliferative activity of GCs, ATP levels, glycolytic metabolic rate, HIF1α, CX43, PEK, HK1, LDH mRNA, and protein levels. CONCLUSIONS: The study indicated that YLZ increased the proliferation and glycolytic energy metabolism of GCs to improve follicular development further alleviating ovarian function.


Asunto(s)
Proliferación Celular , Conexina 43 , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Metabolismo Energético , Células de la Granulosa , Subunidad alfa del Factor 1 Inducible por Hipoxia , Insuficiencia Ovárica Primaria , Animales , Femenino , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Insuficiencia Ovárica Primaria/metabolismo , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratas , Proliferación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Metabolismo Energético/efectos de los fármacos , Conexina 43/metabolismo , Conexina 43/genética , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
10.
Polymers (Basel) ; 16(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38201817

RESUMEN

Under a global carbon-neutralizing environment, renewable wood is a viable alternative to non-renewable resources due to its abundance and high specific strength. However, fast-growing wood is hard to be applied extensively due to low mechanical strength and poor dimensional stability and durability. In this study, epoxy-acrylic resin-modified wood was prepared by forming a functional monomer system with three monomers [glycidyl methacrylate (GMA), maleic anhydride (MAN), and polyethylene glycol-200-dimethylacrylic acid (PEGDMA)] and filling into the wood cell cavity. The results showed that in the case of an optimal monomer system of nGMA:nPEGDMA = 20:1 and an optimal MAN dosage of 6%, the conversion rate of monomers reached 98.01%, the cell cavity was evenly filled by the polymer, with the cell wall chemically bonded. Thus, a bonding strength of as high as 1.13 MPa, a bending strength of 112.6 MPa and an impact toughness of 74.85 KJ/m2 were applied to the modified wood, which presented excellent dimensional stability (720 h water absorption: 26%, and volume expansion ratio: 5.04%) and rot resistance (loss rates from white rot and brown rot: 3.05% and 0.67%). Additionally, polymer-modified wood also exhibited excellent wear resistance and heat stability. This study reports a novel approach for building new environmentally friendly wood with high strength and toughness and good structural stability and durability.

11.
Cell Death Dis ; 14(12): 843, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114477

RESUMEN

Esophageal cancer is a highly incidence and deadly disease with a poor prognosis, especially in developing countries. Owing to the lack of specific symptoms and early diagnostic biomarkers, most patients are diagnosed with advanced disease, leading to a 5-year survival rate of less than 15%. Early (n = 50) and middle-advanced (n = 50) esophageal squamous cell carcinoma (ESCC) patients, as well as 71 healthy individuals, underwent 5-hydroxymethylcytosine (5hmC) sequencing on their plasma cell-free DNA (cfDNA). A Northern Chinese cohort of cfDNA 5hmC dataset of 150 ESCC patients and 183 healthy individuals were downloaded for validation. A diagnostic model was developed using cfDNA 5hmC signatures and then improved by low-pass whole genome sequencing (WGS) features of cfDNA. Conserved cfDNA 5hmC modification motifs were observed in the two independent ESCC cohorts. The diagnostic model with 5hmC features achieved an AUC of 0.810 and 0.862 in the Southern and Northern cohorts, respectively, with sensitivities of 69.3-74.3% and specificities of 82.4-90.7%. The performance was well maintained in Stage I to Stage IV, with accuracy of 70-100%, but low in Stage 0, 33.3%. Low-pass WGS of cfDNA improved the AUC to 0.934 with a sensitivity of 82.4%, a specificity of 88.2%, and an accuracy of 84.3%, particularly significantly in Stage 0, with an accuracy up to 80%. 5hmC and WGS could efficiently differentiate very early ESCC from healthy individuals. These findings imply a non-invasive and convenient method for ESCC detection when clinical treatments are available and may eventually prolong survival.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/diagnóstico , Carcinoma de Células Escamosas de Esófago/genética , Ácidos Nucleicos Libres de Células/genética , Secuenciación Completa del Genoma , Biomarcadores de Tumor/genética
12.
Aging (Albany NY) ; 15(14): 7237-7257, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37498296

RESUMEN

Non-SMC condensin I complex subunit D2 (NCAPD2) is overexpressed in some malignant tumors. However, there are few studies on the function of NCAPD2 in pan-cancer. We used the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Human Protein Atlas (HPA), and UALCAN to analyze NCAPD2 expression and promoter methylation levels in 33 tumors and normal samples. We performed immunohistochemistry (IHC) on liver cancer and corresponding normal tissues to examine NCAPD2 protein expression in LIHC. Kaplan-Meier survival and univariate regression analyses were performed to explore the pan-cancer clinical significance of NCAPD2. Moreover, correlative analysis between NCAPD2 expression and clinical characteristics, immune cell infiltration, immune checkpoints, immune regulators, tumor mutation burden (TMB), microsatellite instability (MSI), ribonucleic acid (RNA) methylation regulators, and drug sensitivity was conducted using data from TCGA. We also investigated the effects of NCAPD2 expression on immunotherapy efficacy and prognosis. Gene set enrichment analysis (GSEA) was conducted using NCAPD2. Bioinformatic analysis showed that NCAPD2 was overexpressed in most tumors and correlated with the clinical characteristics of some cancers. IHC results demonstrated that NCAPD2 protein expression was higher in LIHC than in normal liver. NCAPD2 expression was linked with T stage, clinical stage, and histologic grade in LIHC. Overexpression of NCAPD2 resulted in poor overall survival, and disease-specific survival in adrenocortical carcinoma, kidney renal papillary cell carcinoma, brain lower grade glioma, liver hepatocellular carcinoma, lung adenocarcinoma, mesothelioma, pancreatic adenocarcinoma, sarcoma, skin cutaneous melanoma, and uterine corpus endometrial carcinoma. NCAPD2 was considered an independent biomarker by Cox regression in LIHC. The time ROC curve demonstrated that the survival rate of 1-, 3-, and 5-year OS and DSS in LIHC was above 0.6. The expression of NCAPD2 was significantly correlated with immune cell infiltration, immune checkpoints, TMB, MSI, and RNA methylation regulators in several tumors. NCAPD2 had a high predictive value for immunotherapy efficiency in certain tumors. In our study, drugs sensitive to NCAPD2 protein were screened by sensitivity analysis. GSEA analysis showed that NCAPD2 mainly participated in the G2M checkpoint, mitotic spindle, and KRAS-signaling. NCAPD2 may act as a prognostic molecular marker in most cancers.


Asunto(s)
Adenocarcinoma , Neoplasias de la Corteza Suprarrenal , Carcinoma Hepatocelular , Carcinoma de Células Renales , Neoplasias Renales , Neoplasias Pulmonares , Melanoma , Neoplasias Pancreáticas , Neoplasias Cutáneas , Humanos , Pronóstico , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas Cromosómicas no Histona , Melanoma Cutáneo Maligno
13.
Waste Manag ; 166: 152-162, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37172516

RESUMEN

Food waste can be converted into insectile fatty acids (FAs) by the larvae of black soldier fly (BSFL), Hermetia illucens, for use in the feed sector or as a source of biodiesel. However, waste oil was less decomposed than carbohydrate or protein in frass due to the limitation of larval lipid metabolism. In this study, 10 yeast strains were screened, corresponding to six species, to examine their capacity of improving lipid transformation performance by BSFL. The species of Candida lipolytica was superior to the other five species, which exhibited significantly higher lipid reduction rate (95.0-97.1 %) than the control (88.7 %), and the larval FA yields achieved 82.3-115.5 % of the food waste FA matters, suggesting that BSFL not only transformed waste oil but also biosynthesized FAs from waste carbohydrate and other substances. Further, the CL2 strain of Candida lipolytica was examined for treating food waste containing high lipid content (16-32 %). The lipid removal rate was found improved from 21.4 to 42.3 % (control) to 80.5-93.3% in the waste containing 20-32 % lipid. The upper limit of lipid content that could be endured by BSFL was ≈16 %, and the CL2-enrichment elevated the upper limit to ≈24 %. Fungal community analysis indicated that Candida spp. accounted for the lipid removal improvement. The Candida spp. CL2 strain may facilitate the lipid reduction and transformation by BSFL through microbial catabolizing and assimilation of waste FAs. Altogether, this study suggests that yeast enrichment is feasible in improving lipid transformation by BSFL especially for food waste exhibiting high lipid content.


Asunto(s)
Dípteros , Eliminación de Residuos , Animales , Larva , Saccharomyces cerevisiae , Alimentos , Ácidos Grasos , Carbohidratos
14.
Methods Mol Biol ; 2665: 75-83, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37166594

RESUMEN

Label-free quantitation (LFQ) proteomics, mainly based on the extraction of the peptide (precursor) intensity at the MS1 (mass spectrum 1) level, enables to quantify the relative amount of the proteins among samples. In an LFQ proteomics study, all samples are scanned individually on an advanced mass spectrometer and the chromatographic features of each run are extracted to generate consensus patterns among various runs in the experiment. Here, we describe the LFQ proteomics experimental protocol adapted for plant research, such as plant iron homeostasis.


Asunto(s)
Proteínas , Proteómica , Proteómica/métodos , Proteínas/análisis , Péptidos/química , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Proteoma/análisis
15.
J Nat Med ; 77(3): 446-454, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36892720

RESUMEN

Acacetin is a natural flavonoid compound with multiple therapeutic potential in oxidative stress, inflammation, cancers, cardiovascular disease and infections. The present study aimed to detect the effect of acacetin on pancreatic and hepatorenal dysfunction in type 2 diabetic rats. The diabetic rats were induced by high-fat diet (HFD) followed by intraperitoneal injection of streptozotocin (STZ) at a dose of 45 mg/kg. Different doses of acacetin were orally administrated once a day for 8 weeks after the diabetic model was successfully established. The experimental results revealed that acacetin and acarbose displayed obvious attenuation in the levels of fasting blood glucose (FBG) and lipids compared to the untreated diabetic rats. In addition, the physiological function of liver and kidney was impaired in the persistent environment of hyperglycemia, while acacetin improved the damage of liver and kidney. Furthermore, hematoxylin-eosin (H&E) staining indicated that acacetin alleviated the pathological alterations of the pancreas, liver and kidney tissues. Besides, the increased levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-8 and malondialdehyde (MDA) were recused by acacetin treatment, while the reduction of superoxide dismutase (SOD) levels were suppressed by acacetin treatment. In conclusion, the experimental results demonstrated that acacetin improved the lipids and glucose levels, and hepatorenal antioxidant capacity, as well as ameliorated hepatorenal dysfunction in type 2 diabetic rats, and the potential mechanism might be associated with its antioxidant and anti-inflammatory activities.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratas , Animales , Antioxidantes/farmacología , Estreptozocina/toxicidad , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inducido químicamente , Dieta Alta en Grasa/efectos adversos , Glucemia , Páncreas , Estrés Oxidativo , Diabetes Mellitus Tipo 2/patología , Hígado , Lípidos
16.
Molecules ; 28(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36838890

RESUMEN

Although black soldier fly larvae (BSFL) can convert food waste into insectile fatty acids (FAs), the chronological and diet-dependent transformation of larval FAs has yet to be determined. This study focused on the dynamics of larval FA profiles following food waste treatment and characterized factors that may drive FA composition and bioaccumulation. Larval FA matters peaked on Day 11 as 7.7 ± 0.7% of food waste dry matter, maintained stably from Day 11-19, and decreased slightly from Day 19-21. The BSFL primarily utilized waste carbohydrates for FA bioconversion (Day 0-11) and shifted to waste FAs (Day 7-17) when the carbohydrates were close to depletion. The optimal time window for larvae harvest was Days 17-19, which fulfilled both targets of waste oil removal and larval FA transformation. Larval FAs were dominated by C12:0, followed by C18:2, C18:1, and C16:0. The waste-reducing carbohydrate primarily accounted for larval FA bioaccumulation (r = -0.947, p < 0.001). The increase in diet carbohydrate ratio resulted in the elevation of larval C12:0 yield, which indicated that larval C12:0-FA was primarily biosynthesized from carbohydrates and further transformed from ≥C16 FAs. This study elucidates the bioaccumulation process of larval FAs for food waste treatment and highlights the importance of waste carbohydrates for both the composition and transformation of larval FAs.


Asunto(s)
Dípteros , Eliminación de Residuos , Animales , Larva , Alimentos , Ácidos Grasos , Carbohidratos
17.
Polymers (Basel) ; 15(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36850165

RESUMEN

Waterborne polyurethane coatings (WPU) are widely used in various types of coatings due to their environmental friendliness, rich gloss, and strong adhesion. However, their inferior mechanical properties and solvent resistance limit their application on the surface of wood products. In this study, graphene oxide (GO) with nanoscale size, large surface area, and abundant functional groups was incorporated into WPU by chemical grafting to improve the dispersion of GO in WPU, resulting in excellent mechanical properties and solvent resistance of WPU coatings. GO with abundant oxygen-containing functional groups and nanoscale size was prepared, and maintained good compatibility with WPU. When the GO concentration was 0.7 wt%, the tensile strength of GO-modified WPU coating film increased by 64.89%, and the abrasion resistance and pendulum hardness increased by 28.19% and 15.87%, respectively. In addition, GO also improved the solvent resistance of WPU coatings. The chemical grafting strategy employed in this study provides a feasible way to improve the dispersion of GO in WPU and provides a useful reference for the modification of waterborne wood coatings.

18.
Nutr Neurosci ; 26(8): 778-795, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35816410

RESUMEN

ABSTRACTThe results of treatment effect of vitamin or antioxidant intake on diabetic peripheral neuropathy (DPN) was inconsistent. Therefore, we performed a meta-analysis of randomized controlled trials (RCTs) to examine whether these supplements are effective in DPN treatment. We searched seven databases from inception to October 2021. All RCTs of DPN treatments with vitamin and antioxidant supplements were included. We performed sensitivity and subgroup analysis, and also tested for publication bias by the funnel plot and Egger's test. A total of 14 studies with 1384 patients were included in this systematic review. Three high-quality trials showed that vitamin and antioxidant supplements significantly increased sensory nerve conduction velocity (SNCV) of the sural nerve (MD = 2.66, 95%CI (0.60, 4.72), P < 0.05, I2 = 0%). Seven studies (758 participants) suggested that these supplements might have improvement on motor nerve conduction velocity (MNCV) of the peroneal nerve in DPN patients with the random-effect model (MD = 0.60, 95%CI (0.28, 0.92), P < 0.05, I2 = 65%). In four studies, these supplements could have improved on MNCV of the median nerve with the fixed-effect model (MD = 4.22, 95%CI (2.86, 5.57), P < 0.05, I2 = 0%). However, ten studies (841 participants) have suggested that vitamin and antioxidant supplements have not decreased glycosylated haemoglobin (HbA1c). Vitamin and antioxidant supplements may improve the conduction velocity of nerves, including median, sural and peroneal nerves of patients with DPN. But these supplements have not decreased HbA1c in DPN patients. Several trials with a large sample size are needed to provide evidence support for clinical practice in the future.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Humanos , Antioxidantes , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/inducido químicamente , Vitaminas/uso terapéutico , Hemoglobina Glucada , Ensayos Clínicos Controlados Aleatorios como Asunto
19.
Polymers (Basel) ; 16(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38201758

RESUMEN

Traditional wood-polymer composite (WPC) based on the in situ polymerization of ethylene unsaturated monomers in the cellular cavity of wood is significant for the high-value-added utilization of low-quality wood. However, this type of WPC has the problems of volatile monomers, low conversion rates, odor residue, and poor compatibility between the polymer and wood interface, which hinder its promotion and application. In this study, a two-step process of cell wall bulking in combination with cell lumen filling was prepared to modify wood using Maleic anhydride (MAN) as the bulking agent and GMA-EGDMA (molar ratio 2:1) as the active monomer system. The results indicate that the modulus of rupture (MOR) (125.19 ± 8.41 MPa), compressive strength (116.38 ± 7.69 MPa), impact toughness (55.4 ± 2.95 KJ m-2), and hardness (6187 ± 273 N) of the bulking-filling wood composite materials were improved by 54%, 56%, 36%, and 66%, respectively, compared with those of poplar wood. These properties were superior to those of the traditional styrene (PSt)-WPC and even exceeded the performance of Xylosma congesta (Lour.) Merr, a high-quality wood from northeast China. Meanwhile, the mass loss of wood composite materials with bulking-filling treatment was only 2.35 ± 0.05%, and the internal structure remained intact, presenting excellent decay resistance. Additionally, the treatment also significantly improved the thermal and dimensional stability of the wood composites. This study provides a theoretical basis and guidance for realizing the high-value-added application of low-quality wood and the preparation of highly durable wood-based composites.

20.
Polymers (Basel) ; 14(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36501668

RESUMEN

Wood is a viable alternative to traditional steel, cement, and concrete as a structural material for building applications, utilizing renewable resources and addressing the challenges of high energy consumption and environmental pollution in the construction industry. However, the vast supply of fast-growing poplar wood has bottlenecks in terms of low strength and dimensional stability, making it difficult to use as a structural material. An environmentally friendly acrylic resin system was designed and cured in this study to fill the poplar cell cavities, resulting in a new type of poplar laminated veneer lumber with improved mechanical strength and dimensional stability. The optimized acrylic resin system had a solid content of 25% and a curing agent content of 10% of the resin solid content. The cured filled poplar veneer gained 81.36% of its weight and had a density of 0.69 g/cm3. The static flexural strength and modulus of elasticity of the further prepared laminated veneer lumber were 123.12 MPa and 12,944.76 MPa, respectively, exceeding the highest flexural strength required for wood structural timber for construction (modulus of elasticity 12,500 MPa and static flexural strength 35 MPa). Its tensile strength, impact toughness, hardness, attrition value, water absorption, water absorption thickness expansion, and water absorption width expansion were 58.81%, 19.50%, 419.18%, 76.83%, 44.38%, 13.90%, and 37.60% higher than untreated laminated veneer lumber, demonstrating improved mechanical strength and dimensional stability, significantly. This method provides a novel approach to encouraging the use of low-value-added poplar wood in high-value-added structural building material applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...