Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Neural Syst ; : 2450041, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38770650

RESUMEN

Electroencephalography (EEG) plays a crucial role in epilepsy analysis, and epileptic seizure prediction has significant value for clinical treatment of epilepsy. Currently, prediction methods using Convolutional Neural Network (CNN) primarily focus on local features of EEG, making it challenging to simultaneously capture the spatial and temporal features from multi-channel EEGs to identify the preictal state effectively. In order to extract inherent spatial relationships among multi-channel EEGs while obtaining their temporal correlations, this study proposed an end-to-end model for the prediction of epileptic seizures by incorporating Graph Attention Network (GAT) and Temporal Convolutional Network (TCN). Low-pass filtered EEG signals were fed into the GAT module for EEG spatial feature extraction, and followed by TCN to capture temporal features, allowing the end-to-end model to acquire the spatiotemporal correlations of multi-channel EEGs. The system was evaluated on the publicly available CHB-MIT database, yielding segment-based accuracy of 98.71%, specificity of 98.35%, sensitivity of 99.07%, and F1-score of 98.71%, respectively. Event-based sensitivity of 97.03% and False Positive Rate (FPR) of 0.03/h was also achieved. Experimental results demonstrated this system can achieve superior performance for seizure prediction by leveraging the fusion of EEG spatiotemporal features without the need of feature engineering.

2.
JCI Insight ; 9(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38258906

RESUMEN

Bile acids (BAs) affect the intestinal environment by ensuring barrier integrity, maintaining microbiota balance, regulating epithelium turnover, and modulating the immune system. As a master regulator of BA homeostasis, farnesoid X receptor (FXR) is severely compromised in patients with inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CAC). At the front line, gut macrophages react to the microbiota and metabolites that breach the epithelium. We aim to study the role of the BA/FXR axis in macrophages. This study demonstrates that inflammation-induced epithelial abnormalities compromised FXR signaling and altered BAs' profile in a mouse CAC model. Further, gut macrophage-intrinsic FXR sensed aberrant BAs, leading to pro-inflammatory cytokines' secretion, which promoted intestinal stem cell proliferation. Mechanistically, activation of FXR ameliorated intestinal inflammation and inhibited colitis-associated tumor growth, by regulating gut macrophages' recruitment, polarization, and crosstalk with Th17 cells. However, deletion of FXR in bone marrow or gut macrophages escalated the intestinal inflammation. In summary, our study reveals a distinctive regulatory role of FXR in gut macrophages, suggesting its potential as a therapeutic target for addressing IBD and CAC.


Asunto(s)
Colitis , Neoplasias del Colon , Receptores Citoplasmáticos y Nucleares , Animales , Ratones , Ácidos y Sales Biliares , Colitis/complicaciones , Neoplasias del Colon/etiología , Modelos Animales de Enfermedad , Inflamación , Macrófagos , Receptores Citoplasmáticos y Nucleares/metabolismo
3.
Int J Neural Syst ; 34(3): 2450012, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38230571

RESUMEN

Automatic seizure detection plays a key role in assisting clinicians for rapid diagnosis and treatment of epilepsy. In view of the parallelism of temporal convolutional network (TCN) and the capability of bidirectional long short-term memory (BiLSTM) in mining the long-range dependency of multi-channel time-series, we propose an automatic seizure detection method with a novel end-to-end TCN-BiLSTM model in this work. First, raw EEG is filtered with a 0.5-45 Hz band-pass filter, and the filtered data are input into the proposed TCN-BiLSTM network for feature extraction and classification. Post-processing process including moving average filtering, thresholding and collar technique is then employed to further improve the detection performance. The method was evaluated on two EEG database. On the CHB-MIT scalp EEG database, our method achieved a segment-based sensitivity of 94.31%, specificity of 97.13%, and accuracy of 97.09%. Meanwhile, an event-based sensitivity of 96.48% and an average false detection rate (FDR) of 0.38/h were obtained. On the SH-SDU database we collected, the segment-based sensitivity of 94.99%, specificity of 93.25%, and accuracy of 93.27% were achieved. In addition, an event-based sensitivity of 99.35% and a false detection rate of 0.54/h were yielded. The total detection time consumed for 1[Formula: see text]h EEG data was 5.65[Formula: see text]s. These results demonstrate the superiority and promising potential of the proposed method in real-time monitoring of epileptic seizures.


Asunto(s)
Epilepsia , Memoria a Corto Plazo , Humanos , Convulsiones/diagnóstico , Epilepsia/diagnóstico , Electroencefalografía/métodos , Bases de Datos Factuales , Algoritmos , Procesamiento de Señales Asistido por Computador
4.
Cell Mol Gastroenterol Hepatol ; 17(2): 292-308.e1, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37820788

RESUMEN

BACKGROUND & AIMS: Metabolic reprogramming is essential for the activation and functions of macrophages, including bacterial killing and cytokine production. Bromodomain-containing protein 4 (BRD4) has emerged as a critical regulator of innate immune response. However, the potential role of BRD4 in the metabolic reprogramming of macrophage activation upon Helicobacter pylori infection remains unclear. METHODS: Bone marrow-derived macrophages (BMDMs) from wild-type (WT) and Brd4-myeloid deletion conditional knockout (Brd4-CKO) mice were infected with H pylori. RNA sequencing was performed to evaluate the differential gene expression between WT and Brd4-deficient BMDMs upon infection. An in vivo model of H pylori infection using WT and Brd4-CKO mice was used to confirm the role of BRD4 in innate immune response to infection. RESULTS: Depletion of Brd4 in BMDMs showed impaired H pylori-induced glycolysis. In addition, H pylori-induced expression of glycolytic genes, including Slc2a1 and Hk2, was decreased in Brd4-deficient BMDMs. BRD4 was recruited to the promoters of Slc2a1 and Hk2 via hypoxia-inducible factor-1α, facilitating their expression. BRD4-mediated glycolysis stabilized H pylori-induced nitric oxide synthase (Nos2) messenger RNA to produce nitric oxide. The NO-mediated killing of H pylori decreased in Brd4-deficient BMDMs, which was rescued by pyruvate. Furthermore, Brd4-CKO mice infected with H pylori showed reduced gastric inflammation and increased H pylori colonization with reduced inducible NO synthase expression in gastric macrophages. CONCLUSIONS: Our study identified BRD4 as a key regulator of hypoxia-inducible factor-1α-dependent glycolysis and macrophage activation. Furthermore, we show a novel regulatory role of BRD4 in innate immunity through glycolysis to stabilize Nos2 messenger RNA for NO production to eliminate H pylori infection.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Animales , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Infecciones por Helicobacter/microbiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Helicobacter pylori/metabolismo , Macrófagos/metabolismo , Óxido Nítrico Sintasa/metabolismo , ARN Mensajero/metabolismo , Glucólisis , Óxido Nítrico Sintasa de Tipo II/metabolismo
5.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37895002

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are common carcinogens. Benzo(a)pyrene is one of the most difficult high-molecular-weight (HMW) PAHs to remove. Biodegradation has become an ideal method to eliminate PAH pollutants from the environment. The existing research is mostly limited to low-molecular-weight PAHs; there is little understanding of HMW PAHs, particularly benzo(a)pyrene. Research into the biodegradation of HMW PAHs contributes to the development of microbial metabolic mechanisms and also provides new systems for environmental treatments. Pseudomonas benzopyrenica BaP3 is a highly efficient benzo(a)pyrene-degrading strain that is isolated from soil samples, but its mechanism of degradation remains unknown. In this study, we aimed to clarify the high degradation efficiency mechanism of BaP3. The genes encoding Rhd1 and Rhd2 in strain BaP3 were characterized, and the results revealed that rhd1 was the critical factor for high degradation efficiency. Molecular docking and enzyme activity determinations confirmed this conclusion. A recombinant strain that could completely mineralize benzo(a)pyrene was also proposed for the first time. We explained the mechanism of the high-efficiency benzo(a)pyrene degradation ability of BaP3 to improve understanding of the degradation mechanism of highly toxic PAHs and to provide new solutions to practical applications via synthetic biology.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Benzo(a)pireno/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Simulación del Acoplamiento Molecular , Hidrocarburos Policíclicos Aromáticos/metabolismo , Contaminantes del Suelo/metabolismo
6.
Int J Neural Syst ; 33(11): 2350054, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37675593

RESUMEN

Early seizure prediction is crucial for epilepsy patients to reduce accidental injuries and improve their quality of life. Identifying pre-ictal EEG from the inter-ictal state is particularly challenging due to their nonictal nature and remarkable similarities. In this study, a novel epileptic seizure prediction method is proposed based on multi-head attention (MHA) augmented convolutional neural network (CNN) to address the issue of CNN's limit of capturing global information of input signals. First, data enhancement is performed on original EEG recordings to balance the pre-ictal and inter-ictal EEG data, and the EEG recordings are sliced into 6-second-long EEG segments. Subsequently, EEG time-frequency distribution is obtained using Stockwell transform (ST), and the attention augmented convolutional network is employed for feature extraction and classification. Finally, post-processing is utilized to reduce the false prediction rate (FPR). The CHB-MIT EEG database was used to evaluate the system. The validation results showed a segment-based sensitivity of 98.24% and an event-based sensitivity of 94.78% with a FPR of 0.05/h were yielded, respectively. The satisfying results of the proposed method demonstrate its possible potential for clinical applications.


Asunto(s)
Epilepsia , Calidad de Vida , Humanos , Electroencefalografía/métodos , Convulsiones/diagnóstico , Epilepsia/diagnóstico , Redes Neurales de la Computación
7.
Artículo en Inglés | MEDLINE | ID: mdl-37725099

RESUMEN

A Gram-negative, yellow-pigmented, aerobic and rod-shaped bacterium, designated as strain BaP3T, was isolated from the soil. Strain BaP3T grew at 16-37℃ (optimum, 30 °C) and pH 6.0-8.0 (optimum, pH 7.0). Additionally, strain BaP3T could tolerate NaCl concentrations in the range 0-6 % (optimum, 1%). Moreover, strain BaP3T was motile by flagella. The phylogenetic analysis of 16S rRNA sequences showed that strain BaP3T belonged to the genus Pseudomonas, and the sequence was most closely related to Pseudomonas oryzihabitans CGMCC 1.3392T and Pseudomonas psychrotolerans DSM 15758T, with 99.66 % sequence similarity. Pseudomonas rhizoryzae RY24T was the next closely related species, exhibiting 99.38 % 16S rRNA gene sequence similarity. The DNA-DNA hybridization and average nucleotide identity values between strain BaP3T and its closely related types were below 50 and 92 %, respectively. Both results were below the cut-off for species distinction. The genomic DNA G+C content of strain BaP3T was 65.30 mol%. The predominant quinone in strain BaP3T was identified as ubiquinone Q-9. The major cellular fatty acids were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and C16 : 0. These results indicated that strain BaP3T represents a novel species in the genus Pseudomonas. The type strain is BaP3T (CCTCC AB 2022379T=JCM 35914T), for which the name Pseudomonas benzopyrenica sp. nov. is proposed.


Asunto(s)
Benzo(a)pireno , Suelo , Composición de Base , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Pseudomonas/genética
9.
J Biol Chem ; 299(8): 104946, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37348559

RESUMEN

Dysregulated bile acid (BA)/lipid metabolism and gut bacteria dysbiosis are tightly associated with the development of obesity and non-alcoholic fatty liver disease (NAFLD). The orphan nuclear receptor, Small Heterodimer Partner (SHP/NR0B2), is a key regulator of BA/lipid metabolism, and its gene-regulating function is markedly enhanced by phosphorylation at Thr-58 mediated by a gut hormone, fibroblast growth factor-15/19 (FGF15/19). To investigate the role of this phosphorylation in whole-body energy metabolism, we generated transgenic SHP-T58A knock-in mice. Compared with wild-type (WT) mice, the phosphorylation-defective SHP-T58A mice gained weight more rapidly with decreased energy expenditure and increased lipid/BA levels. This obesity-prone phenotype was associated with the upregulation of lipid/BA synthesis genes and downregulation of lipophagy/ß-oxidation genes. Mechanistically, defective SHP phosphorylation selectively impaired its interaction with LRH-1, resulting in de-repression of SHP/LRH-1 target BA/lipid synthesis genes. Remarkably, BA composition and selective gut bacteria which are known to impact obesity, were also altered in these mice. Upon feeding a high-fat diet, fatty liver developed more severely in SHP-T58A mice compared to WT mice. Treatment with antibiotics substantially improved the fatty liver phenotypes in both groups but had greater effects in the T58A mice so that the difference between the groups was largely eliminated. These results demonstrate that defective phosphorylation at a single nuclear receptor residue can impact whole-body energy metabolism by altering BA/lipid metabolism and gut bacteria, promoting complex metabolic disorders like NAFLD. Since posttranslational modifications generally act in gene- and context-specific manners, the FGF15/19-SHP phosphorylation axis may allow more targeted therapy for NAFLD.


Asunto(s)
Ácidos y Sales Biliares , Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Ácidos y Sales Biliares/análisis , Ácidos y Sales Biliares/genética , Lípidos/sangre , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/microbiología , Obesidad/microbiología , Fosforilación , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Masculino , Antibacterianos/farmacología
10.
J Colloid Interface Sci ; 649: 685-693, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37385033

RESUMEN

Constructing semiconductor heterojunctions can enable novel schemes for highly efficient photocatalytic activity. However, introducing strong covalent bonding at the interface remains an open challenge. Herein, ZnIn2S4 (ZIS) with abundant sulfur vacancies (Sv) is synthesized with the presence of PdSe2 as an additional precursor. The sulfur vacancies of Sv-ZIS are filled by Se atoms of PdSe2, leading to the Zn-In-Se-Pd compound interface. Our density functional theory (DFT) calculations reveal the increased density of states at the interface, which will increase the local carrier concentration. Moreover, the length of the Se-H bond is longer than that of the SH bond, which is good for the evolution of H2 from the interface. In addition, the charge redistribution at the interface results in a built-in field, providing the driving force for efficient separation of photogenerated electron-hole. Therefore, the PdSe2/Sv-ZIS heterojunction with strong covalent interface exhibits an excellent photocatalytic hydrogen evolution performance (4423 µmol g-1h-1) with an apparent quantum efficiency (λ > 420 nm) of 9.1 %. This work will provide new inspirations to improve photocatalytic activity by engineering the interfaces of semiconductor heterojunctions.

11.
J Org Chem ; 88(1): 189-197, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36548942

RESUMEN

The diverse structures of DNA serve as potent chiral scaffolds for DNA-based asymmetric catalysis, yet in most cases tens to hundreds of nucleotides in DNA hybrid catalysts hinder the deep insight into their structure-activity relationship. Owing to the structural simplicity and design flexibility of nucleotides, nucleotide-based catalysts have been emerging as a promising way to obtain fine structural information and understand the catalytic mechanisms. Herein, we found that a cyclic dinucleotide of cyclic di-AMP (c-di-AMP) and 1,10-phenanthroline copper(II) nitrate (Cu(phen)(NO3)2) are assembled to a c-di-AMP-based catalyst (c-di-AMP/Cu(phen)(NO3)2), which could fast achieve enantioselective fluorination in water with 90-99% yields and up to 90% enantiomeric excess (ee). The host-guest interaction between c-di-AMP and Cu(phen)(NO3)2 has been proposed mainly in a supramolecular interaction mode as evidenced by spectroscopic techniques of ultraviolet-visible, fluorescence, circular dichroism, and nuclear magnetic resonance. Cu(phen)(NO3)2 tightly binds to c-di-AMP with a binding constant of 1.7 ± 0.3 × 105 M-1, and the assembly of c-di-AMP/Cu(phen)(NO3)2 shows a modest rate enhancement to carbon-fluorine bond formations as supported by kinetic studies.


Asunto(s)
Halogenación , Agua , Estereoisomerismo , Cinética , Cobre/química , Nucleótidos , ADN/química
12.
Sensors (Basel) ; 24(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38202939

RESUMEN

Epilepsy is a chronic neurological disease associated with abnormal neuronal activity in the brain. Seizure detection algorithms are essential in reducing the workload of medical staff reviewing electroencephalogram (EEG) records. In this work, we propose a novel automatic epileptic EEG detection method based on Stockwell transform and Transformer. First, the S-transform is applied to the original EEG segments, acquiring accurate time-frequency representations. Subsequently, the obtained time-frequency matrices are grouped into different EEG rhythm blocks and compressed as vectors in these EEG sub-bands. After that, these feature vectors are fed into the Transformer network for feature selection and classification. Moreover, a series of post-processing methods were introduced to enhance the efficiency of the system. When evaluating the public CHB-MIT database, the proposed algorithm achieved an accuracy of 96.15%, a sensitivity of 96.11%, a specificity of 96.38%, a precision of 96.33%, and an area under the curve (AUC) of 0.98 in segment-based experiments, along with a sensitivity of 96.57%, a false detection rate of 0.38/h, and a delay of 20.62 s in event-based experiments. These outstanding results demonstrate the feasibility of implementing this seizure detection method in future clinical applications.


Asunto(s)
Encéfalo , Convulsiones , Humanos , Convulsiones/diagnóstico , Algoritmos , Área Bajo la Curva , Bases de Datos Factuales
13.
Nanomaterials (Basel) ; 12(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36432266

RESUMEN

The introduction of impure atoms or crystal defects is a promising strategy for enhancing the photocatalytic activity of semiconductors. However, the synergy of these two effects in 2D atomic layers remains unexplored. In this case, the preparation of molybdenum-doped thin ZnIn2S4-containing S vacancies (Mo-doped Sv-ZnIn2S4) is conducted using a one-pot solvothermal method. The coordination of Mo doping and S vacancies not only enhances visible light absorption and facilitates the separation of photogenerated carriers but also provides many active sites for photocatalytic reactions. Meanwhile, the Mo-S bonds play function as high-speed channels to rapidly transfer carriers to the active sites, which can directly promote hydrogen evolution. Consequently, Sv-ZnIn2S4 with an optimized amount of Mo doping exhibits a high hydrogen evolution rate of 5739 µmol g-1 h-1 with a corresponding apparent quantum yield (AQY) of 21.24% at 420 nm, which is approximately 5.4 times higher than the original ZnIn2S4. This work provides a new strategy for the development of highly efficient and sustainable 2D atomic photocatalysts for hydrogen evolution.

14.
FEBS Open Bio ; 12(9): 1644-1656, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35792784

RESUMEN

Dinutuximab (ch14.18) was the first approved monoclonal antibody against the tumor-associated antigen disialoganglioside GD2. Despite its success in treating neuroblastoma (NB), it triggers a significant amount of neuropathic pain in patients, possibly through complement-dependent cytotoxicity (CDC). We hypothesized that modifying ch14.18 using antibody engineering techniques, such as humanization, affinity maturation, and Fc engineering, may enable the development of next-generation GD2-specific antibodies with reduced neuropathic pain and enhanced antitumor activity. In this study we developed the H3-16 IgG1m4 antibody from ch14.18 IgG1. H3-16 IgG1m4 exhibited enhanced binding activity to GD2 molecules and GD2-positive cell lines as revealed by ELISA, and its cross-binding activity to other gangliosides was not altered. The CDC activity of H3-16 IgG1m4 was decreased, and the antibody-dependent cellular cytotoxicity (ADCC) activity was enhanced. The pain response after H3-16 IgG1m4 antibody administration was also reduced, as demonstrated using the von Frey test in Sprague-Dawley (SD) rats. In summary, H3-16 IgG1m4 may have potential as a monoclonal antibody with reduced side effects.


Asunto(s)
Anticuerpos Monoclonales , Neuralgia , Animales , Anticuerpos Monoclonales/farmacología , Gangliósidos , Neuralgia/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley
15.
FEBS Open Bio ; 12(7): 1325-1335, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35417079

RESUMEN

Current treatment options for diabetic neuralgia are limited and unsatisfactory. Tanezumab, a monoclonal antibody that blocks nerve growth factor (NGF) signaling, has been shown to be effective in relieving the clinical symptoms of osteoarthritis pain, chronic low back pain, cancer pain induced by bone metastasis, and diabetic neuralgia. However, the clinical development of tanezumab has been terminated due to the risk of induction of rapidly progressive osteoarthritis (RPOA), and no other NGF antibodies have been examined for their ability to treat diabetic neuralgia in either animal models or clinical trials. In this study, a humanized high-affinity NGF monoclonal antibody (mAb), huAb45 that could neutralize the interaction between NGF and its high-affinity receptor TrkA. In a mouse diabetic neuralgia model, it effectively relieved neuropathic pain. This study may serve as the necessary foundation for future studies of huAb45 to potentially treat diabetic neuralgia.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Osteoartritis , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Anticuerpos Monoclonales/farmacología , Diabetes Mellitus/tratamiento farmacológico , Neuropatías Diabéticas/tratamiento farmacológico , Modelos Animales de Enfermedad , Ratones , Factor de Crecimiento Nervioso/metabolismo
17.
Life Sci ; 294: 120383, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35143827

RESUMEN

AIMS: Small molecule compound tyrphostin A9 (A9), an inhibitor of platelet-derived growth factor (PDGF) receptor, was previously reported by our group to stimulate extracellular signal-regulated kinase 1 (ERK1) and 2 (ERK2) in neuronal cells in a PDGF receptor-irrelevant manner. The study aimed to investigate whether A9 could protect axons in experimental autoimmune encephalomyelitis through activation of ERKs. MAIN METHODS: A9 treatment on the protection on neurite outgrowth in SH-SY5Y neuroblastoma cells and primary substantia nigra neuron cultures from the neurotoxin MPP+ were analyzed. Then, clinical symptoms as well as ERK1/2 activation, axonal protection induction, and the abundance increases of the regeneration biomarker GAP-43 in the CNS in the relapsing-remitting experimental autoimmune encephalomyelitis (EAE) model were verified. KEY FINDINGS: A9 treatment could stimulate neurite outgrowth in SH-SY5Y neuroblastoma cells and protect primary substantia nigra neuron cultures from the neurotoxin MPP+. In the relapsing-remitting EAE model, oral administration of A9 successfully ameliorated clinical symptoms, activated ERK1/2, induced axonal protection, and increased the abundance of the regeneration biomarker GAP-43 in the CNS. Interestingly, gene deficiency of ERK1 or ERK2 disrupted the beneficial effects of A9 in MOG-35-55-induced EAE. SIGNIFICANCE: These results demonstrated that small molecule compounds that stimulate persistent ERK activation in vitro and in vivo may be useful in protective or restorative treatment for neurodegenerative diseases.


Asunto(s)
Axones/efectos de los fármacos , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/prevención & control , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Tirfostinos/farmacología , Animales , Encefalomielitis Autoinmune Experimental/etiología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Quinasas MAP Reguladas por Señal Extracelular/genética , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Neuroblastoma/metabolismo , Neuroblastoma/patología , Ratas , Ratas Sprague-Dawley
18.
J Biol Chem ; 297(6): 101420, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34798072

RESUMEN

Activation of the programmed cell death protein 1 and programmed cell death ligand 1 (PD-1/PD-L1) signaling axis plays important roles in intrinsic or acquired resistance to human epidermal growth factor receptor 2 (HER2)-directed therapies in the clinic. Therefore, therapies simultaneously targeting both HER2 and PD-1/PD-L1 signaling pathways are of great significance. Here, aiming to direct the anti-PD-L1 responses toward HER2-expressing tumor cells, we constructed a humanized bispecific IgG1 subclass antibody targeting both HER2 and PD-L1 (HER2/PD-L1; BsAb), which displayed satisfactory purity, thermostability, and serum stability. We found that BsAb showed enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) activity in vitro. In the late phase of peripheral blood mononuclear cell (PBMC)-humanized HER2+ tumor xenograft models, BsAb showed superior therapeutic efficacies as compared with monoclonal antibodies (mAbs) or combination treatment strategies. In cynomolgus monkeys, BsAb showed favorable pharmacokinetics and toxicity profiles when administered at a 10 mg/kg dosage. Thus, HER2/PD-L1 BsAb was demonstrated as a potentially effective option for managing HER2+ and trastuzumab-resistant tumors in the clinic. We propose that the enhanced antitumor activities of BsAb in vivo may be due to direct inhibition of HER2 signaling or activation of T cells.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Anticuerpos Monoclonales de Origen Murino/farmacología , Antineoplásicos Inmunológicos/farmacología , Neoplasias Experimentales/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor ErbB-2/antagonistas & inhibidores , Animales , Citotoxicidad Celular Dependiente de Anticuerpos , Línea Celular Tumoral , Humanos , Ratones , Neoplasias Experimentales/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Receptor ErbB-2/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
19.
STAR Protoc ; 2(4): 100894, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34723211

RESUMEN

NLR family CARD domain containing protein 4 (NLRC4) inflammasome activation and the associated pyroptosis are critical for protection against infection by bacterial pathogens. This protocol presents a detailed procedure to activate and measure NLRC4 inflammasome activation and pyroptosis upon Salmonella Typhimurium infection. The techniques can be adapted to monitoring the activation of other types of inflammasomes and pathogenic stimuli. For comprehensive details on the use and execution of this protocol, please refer to Dong et al. (2021).


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Proteínas de Unión al Calcio , Inflamasomas , Macrófagos , Piroptosis/fisiología , Animales , Proteínas Reguladoras de la Apoptosis/análisis , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al Calcio/análisis , Proteínas de Unión al Calcio/metabolismo , Inflamasomas/análisis , Inflamasomas/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Microscopía Fluorescente
20.
Micromachines (Basel) ; 12(10)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34683290

RESUMEN

A variety of specialty fibers such as no-core fiber (NCF) have already been studied to reveal their sensing abilities. In this work, we investigate a specialty fiber, square-core fiber, for temperature and strain sensing. A simple single-mode-multimode-single-mode (SMS) fiber sensor was fabricated, consisting of a 30-cm-long square-core fiber. The experimental results indicate that the maximal wavelength-temperature and wavelength-strain sensitivities are -15.3 pm/∘C and -1.5 pm/µÎµ, respectively, while the maximal power-temperature and power-strain sensitivities are 0.0896 dBm/∘C and 0.0756 dBm/µÎµ. Analysis of the results suggests that the fiber sensor has the potential to be used as a high-sensitivity temperature sensor with a low strain sensitivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA