Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Public Health ; 12: 1337804, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481839

RESUMEN

Background: Street greenery may have a profound effect on residents' active travel (AT), a mode of transportation involving walking and cycling. This study systematically reviewed the scientific evidence on the effects of street greenery on active travel. Methods: A comprehensive search was performed using keywords and references in PubMed, Web of Science, Scopus, and Cochrane Library. The review included studies that met the following criteria: (1) Study design: experimental studies, cross sectional studies, (2) Participants: individuals of all ages, (3) Exposure variables: street greenery, including street vegetation (e.g., trees, shrubs, and lawns), (4) Outcomes: active travel behaviors (walking, cycling), (5) Article type: peer-reviewed articles, (6) Search time window: from the inception of relevant electronic literature database until 21 June 2023, (7) Geographic scope: worldwide; (8) Language: articles in English. Results: Twenty-six cross-sectional studies met the inclusion criteria and were analyzed. These studies employed objective metrics for assessing street greenery and varied methodologies to measure AT, including 14 using subjective measurements (like self-reported surveys), 10 using objective data (such as mobile app analytics), and two studies combined both approaches. This review identifies a generally positive impact of street greenery on active travel in various aspects. However, the extent of this influence varies with factors such as temporal factors (weekdays vs. weekends), demographic segments (age and gender), proximity parameters (buffer distances), and green space quantification techniques. Street greenness promotes active travel by enhancing environmental esthetics, safety, and comfort, while also improving air quality, reducing noise, and fostering social interactions. In addition, the study suggests that variables like weather, seasonality, and cultural context may also correlate with the effectiveness of street greenery in encouraging active travel. Conclusion: Street greenery positively influences active travel, contributing to public health and environmental sustainability. However, the findings also indicate the need for more granular, experimental, and longitudinal studies to better understand this relationship and the underlying mechanisms. These insights are pivotal for urban planners and policymakers in optimizing green infrastructure to promote active transportation, taking into account local demographics, socio-economic factors, and urban design.


Asunto(s)
Viaje , Caminata , Humanos , Estudios Transversales , Transportes , Autoinforme
2.
Sci Data ; 11(1): 213, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365796

RESUMEN

Low-carbon policies are essential for facilitating manufacturing industries' low-carbon transformation and achieving carbon neutrality in China. However, recent studies usually apply proxy variables to quantify policies, while composite indices of policy intensity measured by objectives and instruments focus more on the national level. It is deficient in direct and comprehensive quantification for low-carbon policies. Hence, having extended the meaning of policy intensity, this paper constructs a low-carbon policy intensity index quantified by policy level, objective and instrument via phrase-oriented NLP algorithm and text-based prompt learning. This process is based on the low-carbon policy inventory we built for China's manufacturing industries containing 7282 national-, provincial- and prefecture-level policies over 2007-2022. Lastly, we organize the dataset in two formats (.dta and .xlsx) for multidiscipline researchers. Apart from the inventory and intensity for each policy, the policy intensity is also aggregated to national-, provincial- and prefecture-level with sub-intensity for four objectives and three instruments. This dataset has potential uses for future studies by merging with macro and micro data related to low-carbon performances.

3.
J Anim Sci Biotechnol ; 15(1): 15, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38302976

RESUMEN

BACKGROUND: Fatty liver hemorrhagic syndrome (FLHS), a fatty liver disease in laying hens, poses a grave threat to the layer industry, stemming from its ability to trigger an alarming plummet in egg production and usher in acute mortality among laying hens. Increasing evidence suggests that the onset and progression of fatty liver was closely related to mitochondria dysfunction. Sodium butyrate was demonstrated to modulate hepatic lipid metabolism, alleviate oxidative stress and improve mitochondrial dysfunction in vitro and mice models. Nevertheless, there is limited existing research on coated sodium butyrate (CSB) to prevent FLHS in laying hens, and whether and how CSB exerts the anti-FLHS effect still needs to be explored. In this experiment, the FLHS model was induced by administering a high-energy low-protein (HELP) diet in laying hens. The objective was to investigate the effects of CSB on alleviating FLHS with a focus on the role of CSB in modulating mitochondrial function. METHODS: A total of 288 healthy 28-week-old Huafeng laying hens were arbitrarily allocated into 4 groups with 6 replicates each, namely, the CON group (normal diet), HELP group (HELP diet), CH500 group (500 mg/kg CSB added to HELP diet) and CH750 group (750 mg/kg CSB added to HELP diet). The duration of the trial encompassed a period of 10 weeks. RESULTS: The result revealed that CSB ameliorated the HELP-induced FLHS by improving hepatic steatosis and pathological damage, reducing the gene levels of fatty acid synthesis, and promoting the mRNA levels of key enzymes of fatty acid catabolism. CSB reduced oxidative stress induced by the HELP diet, upregulated the activity of GSH-Px and SOD, and decreased the content of MDA and ROS. CSB also mitigated the HELP diet-induced inflammatory response by blocking TNF-α, IL-1ß, and F4/80. In addition, dietary CSB supplementation attenuated HELP-induced activation of the mitochondrial unfolded protein response (UPRmt), mitochondrial damage, and decline of ATPase activity. HELP diet decreased the autophagosome formation, and downregulated LC3B but upregulated p62 protein expression, which CSB administration reversed. CSB reduced HELP-induced apoptosis, as indicated by decreases in the Bax/Bcl-2, Caspase-9, Caspase-3, and Cyt C expression levels. CONCLUSIONS: Dietary CSB could ameliorate HELP diet-induced hepatic dysfunction via modulating mitochondrial dynamics, autophagy, and apoptosis in laying hens. Consequently, CSB, as a feed additive, exhibited the capacity to prevent FLHS by modulating autophagy and lipid metabolism.

4.
Poult Sci ; 103(2): 103347, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38150828

RESUMEN

Selenium (i.e., Se) is a trace element that is vital in poultry nutrition, and optimal forms and levels of Se are critical for poultry productivity and health. This study aimed to compare the effects of sodium selenite (SS), yeast selenium (SY), and methionine selenium (SM) at selenium levels of 0.15 mg/kg and 0.30 mg/kg on production performance, egg quality, egg selenium content, antioxidant capacity, immunity and selenoprotein expression in laying hens. The trial was conducted in a 3 × 2 factorial arrangement, and a total of 576 forty-three-wk-old Hyland Brown laying hens were randomly assigned into 6 treatment groups, with diets supplemented with 0.15 mg Se/kg and 0.3 mg Se/kg of SS, SY and SM for 8 wk, respectively. Results revealed that SM increased the laying rate compared to SS and SY (P < 0.05), whereas different selenium levels had no effect. Organic selenium improved egg quality, preservation performance, and selenium deposition compared to SS (P < 0.05), while SY and SM had different preferences for Se deposition in the yolk and albumen. Also, organic selenium enhanced the antioxidant capacity and immune functions of laying hens at 0.15 mg Se/kg, whereas no obvious improvement was observed at 0.30 mg Se/kg. Moreover, SY and SM increased the mRNA expression of most selenoproteins compared to SS (P < 0.05), with SM exhibiting a more pronounced effect. Correlation analysis revealed a strong positive association between glutathione peroxidase 2 (GPx2), thioredoxin reductases (TrxRs), selenoprotein K (SelK), selenoprotein S (SelS), and antioxidant and immune properties. In conclusion, the use of low-dose organic selenium is recommended as a more effective alternative to inorganic selenium, and a dosage of 0.15 mg Se/kg from SM is recommended based on the trail conditions.


Asunto(s)
Selenio , Animales , Femenino , Selenio/metabolismo , Antioxidantes/metabolismo , Pollos/fisiología , Óvulo/química , Suplementos Dietéticos/análisis , Dieta/veterinaria , Selenito de Sodio , Alimentación Animal/análisis
5.
Metabolites ; 13(5)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37233691

RESUMEN

During the aging process of laying hens, hepatic oxidative stress damage and lipid accumulation are prone to occur, leading to the deterioration of egg quality and a decline in production properties. This research was designed to explore the effects of different levels of coated sodium butyrate (CSB) addition on oxidation resistance, inflammatory reaction, lipid metabolism and hepatic oxidative damage-related gene expression in aged laying hens. A total of 720 healthy 52 weeks old Huafeng laying hens were arbitrarily divided into 5 groups of 6 replicates with 24 birds each and fed a basal diet supplemented with 0, 250, 500, 750 and 1000 mg/kg CSB for 8 weeks, respectively. The CSB quadratically upgraded GSH-Px activities and downgraded MDA content in the liver and serum. The LDL-C, NEFA and TG contents decreased quadratically in CSB groups and significantly reduced the fatty vacuoles as well as the formation of fat granules in the liver (p < 0.05). Meanwhile, the CSB quadratically upregulated the gene expression of IL-10, Nrf2 and HO1, but downregulated the gene expression of IFN-γ, TNF-α and Keap1 in a quadratic manner (p < 0.05). Moreover, the CSB quadratically degraded the mRNA level of fatty acid synthesis but increased the gene level of key enzymes of fatty acid catabolism (p < 0.05). In conclusion, dietary CSB supplementation has a favorable effect in protecting against liver injury and alleviating lipid accumulation and inflammation by enhancing hepatic antioxidative function in aged laying hens.

6.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37186172

RESUMEN

The study aimed to investigate whether linoleic acid could improve the intestinal barrier function of squabs under weaning stress conditions. Totally 320 7-d-old weaned squabs were randomly divided into four treatment groups, including control group (CON), 0.7% linoleic acid addition group (LA007), 1.4% linoleic acid addition group (LA014) and 2.1% linoleic acid addition group (LA021). At 21 d, eight squabs were randomly selected from each treatment group for sampling and determination. The results showed that adding linoleic acid could improve (P < 0.05) the body weight of weaned squabs, and LA014 had the best effect. With the increase of linoleic acid dosage, villi height and villi area increased linearly or quadratically (P < 0.05), and reached the maximum in LA021 or LA014, respectively. The linoleic acid supplementation could improve the intestinal tight junction of weaned squabs, and the LA014 was the most significant (P < 0.05). With the linoleic acid increasing, the levels of intestinal IL-6 and TNF-α decreased linearly (P < 0.05), while intestinal IL-10 increased quadratically (P < 0.05) and reached the maximum in LA014. Serum endotoxin and diamine oxidase levels decreased linearly (P < 0.05) and reached the lowest level in LA014. The ultrastructure of villi revealed that the length of ileal microvilli in LA014 was significantly increased (P < 0.05) and the microvilli became dense, and the mitochondria in epithelial cells returned to normal state. Further exploring the mechanism of linoleic acid alleviating intestinal injury caused by weaning stress in squabs, it was found that linoleic acid down-regulated (P < 0.05) the relative protein expression of TLR4, MyD88, phosphorylated JNK, and phosphorylated p38, reducing secretion of pro-inflammatory factors IL-6 and TNF-α. This study indicated that linoleic acid could alleviate intestinal barrier injury of early weaned squabs by down-regulating TLR4-MyD88-JNK/p38-IL6/TNF-α pathway.


Artificial feeding of early weaned squabs can reduce the burden of breeding pigeons and shorten the breeding cycle. However, similar to early weaned mammals, early weaned squabs would also inevitably undergo severe physiological and psychological stress responses in the early stage. The growth performance and immunity of early weaned squabs were inferior to those of the parent feeding squabs. Previous studies suggest that linoleic acid played an important role in the growth and development of squabs. Therefore, the study aimed to investigate whether linoleic acid could improve the intestinal barrier function of squabs under weaning stress conditions. Totally 320 7-d-old weaned squabs were randomly divided into four treatment groups, including control group and linoleic acid addition groups with three different doses. At 21 d, eight squabs were randomly selected from each treatment group for sampling and determination. The results indicated that under weaning stress conditions, linoleic acid could weaken the inflammatory response, and alleviate the intestinal epithelial barrier damage of weaned squabs, specifically by promoting the development of intestinal villi, strengthening the tight junction, reducing intestinal permeability, and promoting the secretion of anti-inflammatory factors.


Asunto(s)
Columbidae , Ácido Linoleico , Animales , Columbidae/fisiología , Ácido Linoleico/farmacología , Ácido Linoleico/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Destete , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 4/metabolismo , Interleucina-6/metabolismo
7.
Urban Clim ; 49: 101533, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37122825

RESUMEN

Coronavirus disease (COVID-19) has disrupted health, economy, and society globally. Thus, many countries, including China, have adopted lockdowns to prevent the epidemic, which has limited human activities while affecting air quality. These affects have received attention from academics, but very few studies have focused on western China, with a lack of comparative studies across lockdown periods. Accordingly, this study examines the effects of lockdowns on air quality and pollution, using the hourly and daily air monitoring data collected from Lanzhou, a large city in Northwest China. The results indicate an overall improvement in air quality during the three lockdowns compared to the average air quality in the recent years, as well as reduced PM2.5, PM10, SO2, NO2, and CO concentrations with different rates and increased O3 concentration. During lockdowns, Lanzhou's "morning peak" of air pollution was alleviated, while the spatial characteristics remained unchanged. Further, ordered multi-classification logistic regression models to explore the mechanisms by which socioeconomic backgrounds and epidemic circumstances influence air quality revealed that the increment in population density significantly aggravated air pollution, while the presence of new cases in Lanzhou, and medium- and high-risk areas in the given district or county both increase the likelihood of air quality improvement in different degrees. These findings contribute to the understanding of the impact of lockdown on air quality, and propose policy suggestions to control air pollution and achieve green development in the post-epidemic era.

8.
Front Oncol ; 13: 1157891, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37020864

RESUMEN

Purpose: Exploring a non-invasive method to accurately differentiate peripheral small cell lung cancer (PSCLC) and peripheral lung adenocarcinoma (PADC) could improve clinical decision-making and prognosis. Methods: This retrospective study reviewed the clinicopathological and imaging data of lung cancer patients between October 2017 and March 2022. A total of 240 patients were enrolled in this study, including 80 cases diagnosed with PSCLC and 160 with PADC. All patients were randomized in a seven-to-three ratio into the training and validation datasets (170 vs. 70, respectively). The least absolute shrinkage and selection operator regression was employed to generate radiomics features and univariate analysis, followed by multivariate logistic regression to select significant clinical and radiographic factors to generate four models: clinical, radiomics, clinical-radiographic, and clinical-radiographic-radiomics (comprehensive). The Delong test was to compare areas under the receiver operating characteristic curves (AUCs) in the models. Results: Five clinical-radiographic features and twenty-three selected radiomics features differed significantly in the identification of PSCLC and PADC. The clinical, radiomics, clinical-radiographic and comprehensive models demonstrated AUCs of 0.8960, 0.8356, 0.9396, and 0.9671 in the validation set, with the comprehensive model having better discernment than the clinical model (P=0.036), the radiomics model (P=0.006) and the clinical-radiographic model (P=0.049). Conclusions: The proposed model combining clinical data, radiographic characteristics and radiomics features could accurately distinguish PSCLC from PADC, thus providing a potential non-invasive method to help clinicians improve treatment decisions.

9.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835309

RESUMEN

Appreciation of the importance of Akkermansia muciniphila is growing, and it is becoming increasingly relevant to identify preventive and/or therapeutic solutions targeting gut-liver-brain axes for multiple diseases via Akkermansia muciniphila. In recent years, Akkermansia muciniphila and its components such as outer membrane proteins and extracellular vesicles have been known to ameliorate host metabolic health and intestinal homeostasis. However, the impacts of Akkermansia muciniphila on host health and disease are complex, as both potentially beneficial and adverse effects are mediated by Akkermansia muciniphila and its derivatives, and in some cases, these effects are dependent upon the host physiology microenvironment and the forms, genotypes, and strain sources of Akkermansia muciniphila. Therefore, this review aims to summarize the current knowledge of how Akkermansia muciniphila interacts with the host and influences host metabolic homeostasis and disease progression. Details of Akkermansia muciniphila will be discussed including its biological and genetic characteristics; biological functions including anti-obesity, anti-diabetes, anti-metabolic-syndrome, anti-inflammation, anti-aging, anti-neurodegenerative disease, and anti-cancer therapy functions; and strategies to elevate its abundance. Key events will be referred to in some specific disease states, and this knowledge should facilitate the identification of Akkermansia muciniphila-based probiotic therapy targeting multiple diseases via gut-liver-brain axes.


Asunto(s)
Probióticos , Verrucomicrobia , Humanos , Verrucomicrobia/metabolismo , Homeostasis , Progresión de la Enfermedad , Hígado , Encéfalo
11.
Proc Natl Acad Sci U S A ; 119(33): e2205048119, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35947620

RESUMEN

We study the fluctuations responsible for pairing in the d-wave superconducting state of the two-dimensional Hubbard model at intermediate coupling within a cluster dynamical mean-field theory with a numerically exact quantum impurity solver. By analyzing how momentum- and frequency-dependent fluctuations generate the d-wave superconducting state in different representations, we identify antiferromagnetic fluctuations as the pairing glue of superconductivity in both the underdoped and the overdoped regime. Nevertheless, in the intermediate coupling regime, the predominant magnetic fluctuations may differ significantly from those described by conventional spin fluctuation theory.

12.
Dalton Trans ; 51(34): 12876-12882, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35920718

RESUMEN

It has been demonstrated that polyoxometalates (POMs) have strong anchoring abilities with efficient catalysis of lithium polysulfides (LiPSs). However, the severe aggregation that buries the effective active sites of POMs along with poor electrical conductivity limits the practical application of POMs in lithium sulfur batteries (LSBs). In our strategy, we utilized reduced graphene oxide (rGO) to support a POM catalyst entrapped in a MIL-88A(FeCo) network with a hollow shell skeleton as the sulfur host material. H4PW11VO40 (PW11V) with optimal vanadium atom implantation ensures the ruggedness and integrity of the hollow structure, which is conducive to achieving high sulfur loading as well as accommodating the volume change of the sulfur cathode during the charging and discharging process. Importantly, PW11V can capture polysulfides through firm chemical adsorption and accelerate redox reactions of LiPS conversion by effective electrochemical catalysis. Furthermore, the satisfactory electrical conductivity of rGO provides access for electrons to reach the interface of PW11V and polysulfides and trigger Li-S conversion reactions. Thus, the constructed PW11V-based sulfur cathode exhibited a superior specific capacity of 905 mA h g-1 after 100 cycles under 0.2 C and long cycling life with a capacity recession rate of 0.046% for each cycle upon 500 cycles under 3 C. This research reveals the effect of vanadium atom substitution of POMs on the cycling performance of a sulfur cathode and affords insight for developing high-performance LSBs.

13.
ACS Appl Mater Interfaces ; 14(32): 36592-36601, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35930544

RESUMEN

The main challenge for sodium/potassium ion storage is to find the suitable host materials to accommodate the larger-sized Na+/K+ and conquer the sluggish chemical kinetics. Herein, by selenation of polyoxometalate in electrospinning fiber, a novel MoO2/MoSe2 heterostructure embedded in one-dimensional (1D) N,P-doped carbon nanofiber (MoO2/MoSe2@NPC) is rationally constructed to show distinct enhancement of rate performance and cycle life for sodium ion batteries (SIBs) and potassium ion batteries (PIBs). The 1D skeleton of MoO2/MoSe2@NPC decreases the diffusion pathway of Na+/K+, and the doping of N/P heteroatoms in carbon fiber creates abundant active sites and provides good reachability for Na+/K+ transportation. MoSe2 nanosheets grow in the bulk phase of MoO2 via in situ local phase transformation to achieve effective and firm heterointerfaces. Especially, the exposure extent of heterointerfaces can be controlled by treatment temperature during the preparation process, and the optimized heterointerfaces result in an ideal synergic effect between MoO2 and MoSe2. DFT calculations confirm that the internal electric field in the heterogeneous interface guides the electron transfer from MoO2 to MoSe2, combined with strong adsorption capacity toward sodium/potassium, facilitating ion/electron transfer kinetics. It is confirmed that the MoO2/MoSe2@NPC anode for SIBs delivers 382 mA h g-1 under 0.1 A g-1 upon 200 cycles; meanwhile, a reversible capacity of 266 mA h g-1 is maintained even under 2 A g-1 after 2000 cycles. For PIBs, it can reach up to 216 mA h g-1 in the 200th cycle and still retain 125 mA h g-1 after 2000 cycles under 1 A g-1. This study opens up a new interface manipulation strategy for the design of anode materials to boost fast Na+/K+ storage kinetics.

14.
Front Immunol ; 13: 926162, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844624

RESUMEN

According to a previous study, we had found that early weaning causes harm to growth performance, intestinal morphology, activity of digestive enzymes, and antioxidant status in pigeon squabs (Columba livia). Chitosan oligosaccharides (COS) and Clostridium butyricum have been reported to have great potential to improve the growth performance and intestinal health of early-weaned animals. Therefore, the aim of this study is to explore whether dietary supplementation with COS-C. butyricum synbiotic could relieve early-weaned stress by evaluating its effects on growth performance and intestinal health in pigeon squabs. A total of 160 squabs (weaned at 7 days of age) were randomly divided into 5 groups: the control group, fed with artificial crop milk; the COS supplementation group, fed with artificial crop milk + 150 mg/kg COS; and three synbiotic supplementation groups, fed with artificial crop milk + 150 mg/kg COS + 200, 300, and 400 mg/kg C. butyricum. The results showed that a diet supplemented with COS-C. butyricum synbiotic benefitted the growth performance of early-weaned squabs; even so the differences were not significant among the five groups (p > 0.05). In addition, dietary supplementation of 150 mg/kg COS + 300~400 mg/kg C. butyricum significantly improved the intestinal morphology (especially villus surface area and the ratio of villus height to crypt depth), the activity of digestive enzymes (lipase, trypsin, and leucine aminopeptidase) in duodenum contents, and the production of total short-chain fatty acids and acetic acid in ileum content (p < 0.05). Additionally, dietary supplementation of 150 mg/kg COS + 400 mg/kg C. butyricum benefitted gut health by improving the antioxidant capacity (glutathione peroxidase and total antioxidant capacity) and cytokine status (IL-4 and IL-10) (p < 0.05), as well as by improving the intestinal microbiota diversity. In conclusion, our results revealed that dietary supplementation with synbiotic (150 mg/kg COS + 300~400 mg/kg C. butyricum) could relieve early-weaned stress by maintaining intestinal health in pigeon squabs.


Asunto(s)
Quitosano , Clostridium butyricum , Simbióticos , Alimentación Animal/análisis , Animales , Antioxidantes , Columbidae , Oligosacáridos , Destete
15.
Front Microbiol ; 13: 877866, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711747

RESUMEN

Early weaning stress has been reported to impair intestinal health in mammals. Like mammals, weaning of the pigeon squab, an altricial bird, is associated with social, environmental and dietary stress. However, understanding of weaning stress on intestinal functions is very limited in altricial birds, especially in squabs. This study was aimed to evaluate the effects of early weaning stress on intestinal microbiota diversity, architecture, permeability, the first line defense mechanisms, mucosal barrier functions, and immune cell responses. A total of 192 newly hatched squabs were randomly allocated into two groups, one weaned on day 7 and the other remained with the parent pigeons. Mucosal tissue and digesta in ileum, as well as blood samples, were collected from squabs (n = 8) on days 1, 4, 7, 10, and 14 postweaning. Our results showed that weaning stress induced immediate and long-term deleterious effects on both growth performance and intestinal barrier functions of squabs. Early weaning significantly increased ileal bacterial diversity and alters the relative abundance of several bacteria taxa. Weaning stress can also cause morphological and functional changes in ileum, including an atrophy in villi, an increase in permeability, and a variation in the mRNA expression of genes encoding mucins, immunoglobulins, tight junction proteins, toll-like receptors, and cytokines, as well as the concentration of secretory IgA. We concluded that the impaired intestinal barrier functions accompanied with early weaning stress seems to be the main reason for the poor growth rate after weaning in squabs. In addition, the disturbance of intestinal microbiota of early weaning stress in squabs coincided with dysfunction of intestinal mucosal barrier and activation of inflammation cell responses that were possibly mediated via the activation of toll-like receptors.

16.
Sci Total Environ ; 843: 156942, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35753487

RESUMEN

Although COVID-19 lockdown policies have improved air quality in numerous countries, there is a lack of empirical evidence on the extent to which recovery has resulted in air pollution rebound, and the differences and similarities among regions' recovery modes during the period of easing COVID-19 restrictions. Here, we used daily air quality data and the recovery index constructed by a city-pair inflow index for 119 cities in China to quantify the impact of recovery on air pollution from March 2 to October 30, 2020. Findings show that recovery has significantly increased air pollution. When the recovery level increased by 10 %, the concentration of PM2.5, SO2, and NO2 respectively deteriorated by 1.10, 0.33, 1.25 µg/m3, and the average growth rates of three air pollutants were about 3 %-6 %. Moreover, we used the counterfactual framework and time series clustering with wavelet transform to cluster the rebound trajectory of air pollution for 17 provinces into five recovery modes. Results show that COVID-19 has further intensified regional differentiations in economic development ability and green recovery trend. Three northwestern provinces dependent on their resource endowments belong to energy-intensive recovery mode, which have experienced a sharp rebound of air pollution for two months, thereby making green recovery more challenging to achieve. Three regions with a diversified industrial structure are in industrial-restructuring recovery mode, which has effectively returned to a normal level through adjusting industrial structure and technological innovation. Owing to local policies and the outbreak of COVID-19 in other countries, six provinces in policy-oriented and international trade-oriented recovery modes have not fully recovered to the level without COVID-19 until October 2020. The result highlights the importance of diversifying industrial structure, technological innovation, policy flexibility and industrial upgrading for different recovery modes to achieve long-term green recovery in the future.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , COVID-19/epidemiología , China/epidemiología , Ciudades , Comercio , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , Internacionalidad , Material Particulado/análisis
17.
Front Nutr ; 9: 849767, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495903

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a chronic and metabolic liver disease and commonly occurs in humans with obesity and type 2 diabetes mellitus (T2DM); such a condition also exists in animals such as rodents and laying hens. Since the pathogenesis of fatty liver hemorrhagic syndrome (FLHS) of laying hens is similar to human NAFLD, hen's FLHS is commonly selected as a study model of NAFLD. Altered circulating amino acids, particularly elevated branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs), are consistently reported in patients with NAFLD and T2DM. How long-term dietary individual BCAA, such as valine, impacts amino acid and fatty acid metabolism remains unknown. In this study, we demonstrated that when laying hens are fed with dietary valine at different levels (59, 0.64, 0.69, 0.74, and 0.79%) in a feeding trial that lasted for 8 weeks, long-term exposure to excessive valine diets at 0.74 and 0.79% levels could induce amino acid imbalance, impair amino acid metabolism, increase fatty acid synthesis, and inhibit fatty acid utilization. Long-term intake of excessive dietary valine could result in impaired amino acid metabolism via inhibiting C/EBP-ß/asparagine synthetase (Asns). This process is mediated by downregulating the general control nonderepressible-eukaryotic initiation factor 2α- activating transcription factor (GCN2-eIF2α-ATF4) pathway and elevating corresponding circulating BCAAs and AAAs levels, which could ultimately result in amino acid imbalance. High levels of dietary valine stimulated lipid deposition by suppressing the GCN2-eIF2α-ATF4-fibroblast growth factor-19 (FGF19)-target of rapamycin complex 1 (TORC1) signaling pathway to promote fatty acid synthesis, repress fatty acid utilization, and eventually accelerate the development of NAFLD. The Spearman correlation analysis revealed that circulating amino acid imbalance is significantly associated with fatty acid metabolism disorder and enhanced oxidative stress. The inhibition of the GCN2-TORC1 pathway induced autophagy suppression to trigger liver oxidative stress and inflammatory response. In conclusion, our results revealed the adverse metabolic response to excessive dietary valine mediated by amino acid and fatty acid metabolism disorders. This study also suggested reducing dietary valine as a novel approach to preventing and treating NAFLD in humans and FLHS in laying hens.

18.
Animals (Basel) ; 12(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35565488

RESUMEN

The improvements in muscle growth rate and meat quality are the major breeding aims in pigeon industry. Liver and muscle are recognized as important sites for fatty acid metabolism; understanding the role of specific transcripts in the breast muscle and liver might lead to the elucidation of interrelated biological processes. In this study, RNA-Sequencing (RNA-Seq) was applied to compare the transcriptomes of breast muscle and liver tissues among pigeons at five developmental periods (0, 1, 2, 3, 4 weeks post-hatching) to identify candidate genes related to muscle growth and lipid metabolism. There were 3142 differentially expressed genes (DEGs) identified in the breast muscle libraries; 1794 genes were up-regulated while 1531 genes were down-regulated. A total of 1323 DEGs were acquired from the liver libraries, with 791 up-regulated genes and 591 down-regulated genes. By pathway enrichment analysis, a set of significantly enriched pathways were identified for the DEGs, which are potentially involved in cell proliferation and differentiation, lipid metabolism and energy metabolism in pigeon breast muscle and liver. Our results are consistent with previous partial reports from domestic animals and poultry and provide some unidentified genes involved in muscle growth and lipid metabolism. The reliability of the sequencing data was verified through qPCR analysis of 16 genes from eight comparison groups (two genes per group). The findings from this study could contribute to future investigations of muscle growth and lipid metabolism mechanisms and establish molecular approaches to improve muscle growth rate and meat quality in domestic pigeon breeding.

19.
Microbiol Spectr ; 10(3): e0189221, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35579441

RESUMEN

Identifying the interaction between intestinal mucosal immune system development and commensal microbiota colonization in neonates is of paramount importance for understanding how early life events affect resistance to disease later in life. However, knowledge about this interaction during the early posthatch development period in altrices is limited. To fill this gap, samples of intestinal content and tissue were collected from newly hatched pigeon squabs at four time points (days 0, 7, 14, and 21) for microbial community analysis and genome-wide transcriptome profiling, respectively. We show that the first week after hatching seems to be the critical window for ileal microbiota colonization and that a potentially stable microbiota has not yet been well established at 21 days of age. Regional transcriptome differences revealed that the jejunum rather than the ileum plays a crucial role in immunity at both the innate and adaptive levels. In the ileum, temporal deviation in innate immune-related genes mainly occurs in the first week of life and is accompanied by a temporal change in microbiota composition, indicating that the ileal innate mucosal immune system development regulated by microbial colonization occurs mainly in this period. Furthermore, we provide evidence that colonization by Escherichia and Lactobacillus within the first week of life is likely one of the causative factors for the induction of proinflammatory cytokine expression in the ileum. We also demonstrate that cellular adaptive immune responses mediated by Th17 cells following commensal-induced proinflammatory cytokine production in the ileum begin as early as the first week posthatch, but this cellular immunity seems to be less effective in terms of maintaining the inflammatory response balance. Because the induction of high levels of mucosal secretory IgA (SIgA) seems to take approximately 3 weeks, we favor the idea that humoral adaptive immunity might be less active, at least, during the first 2 weeks of life. Our data may help to explain the phenomenon of the occurrence of intestinal infections mainly in the ileum of pigeon squabs during the early posthatch period. IMPORTANCE The pigeon (Columba livia), an altricial bird, is one of the most economically important farmed poultry for table purposes. Identifying the interaction between intestinal mucosal immune system development and commensal microbiota colonization in neonates is of paramount importance for understanding how early life events affect resistance to disease and potential productivity later in life. However, knowledge about this interaction during the early posthatch development period in altricial birds is limited. The study described herein is the first to try to provide insights into this interaction. Our data provide evidence on the mutual relationship between intestinal mucosal immune system development and commensal microbiota colonization in pigeon squabs and may help to explain the phenomenon of the occurrence of intestinal infections mainly in the ileum of pigeon squabs during the early posthatch period.


Asunto(s)
Columbidae , Microbiota , Animales , Citocinas , Mucosa Intestinal , Transcriptoma
20.
Animals (Basel) ; 12(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35268114

RESUMEN

This study was designed to evaluate the effects of dietary coated sodium butyrate (CSB) on the intestinal antioxidant, immune function, and cecal microbiota of laying hens. A total of 720 52-week-old Huafeng laying hens were randomly allocated into five groups and fed a basal diet supplemented with CSB at levels of 0 (control), 250 (S250), 500 (S500), 750 (S750), and 1000 (S1000) mg/kg for eight weeks. The results revealed that CSB supplementation quadratically decreased the malondialdehyde content and increased the superoxide dismutase activity of the jejunum as well as the total antioxidative capacity activity of the ileum (p < 0.05). Dietary CSB supplementation linearly decreased the diamine oxidase and D-lactic acid content of the serum (p < 0.05). Compared with the control group, the addition of CSB resulted in linear and/or quadratic effects on the mRNA expression of inflammatory cytokines TNF-α, IL-6, and IL-10 in the jejunum and ileum (p < 0.05). The short-chain fatty acid concentrations increased quadratically as supplemental CSB improved (p < 0.05). Additionally, dietary CSB levels had no effect on microbial richness estimators, but ameliorated cecal microbiota by raising the abundance of probiotics and lowering pathogenic bacteria enrichment. In conclusion, our results suggest that dietary supplementation with CSB could improve the intestinal health of laying hens via positively influencing the antioxidant capacity, inflammatory cytokines, short-chain fatty acids, and gut microbiota. In this study, 500 mg/kg CSB is the optimal supplement concentration in the hens' diet.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA