Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int Microbiol ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530479

RESUMEN

Polyethylene (PE), a non-biodegradable plastic, is widely used in agriculture as a mulch material, which causes serious plastic pollution when it is discarded. Recent studies have described the biodeterioration of PE by bacteria, but it is difficult for a single bacterial species to effectively degrade PE plastic. We isolated two strains with PE-degrading ability, Bacillus cereus (E1) and Rhodococcus equi (E3), from the soil attached to plastic waste on the south side of Mount Tai, China, using a medium with PE plastic as the only carbon source. By clear zone area analysis, we found that E1 mixed with E3 could improve the degradation of PE plastics. The mixture of E1 and E3 was incubated for 110 days in a medium containing PE and mulch film as the only carbon source, respectively. After 110 days, a decrease in pH and mass was observed. Obvious slits and depressions were observed on the surface of the PE film and the mulch films using scanning electron microscopy. The surface hydrophobicity of both films decreased, and FTIR revealed the formation of new oxidation groups on their surfaces during the degradation process and the destruction of the original CH2 long chains of PE. Besides, we found that surface of the mulch films contained more viable bacteria than the liquid medium. In conclusion, we identified two PE-degrading strains whose mixture can effectively degrade mulch film than pure PE film. Our results provide a reference for understanding PE plastic degradation pathways and their associated degradation processes.

2.
Animals (Basel) ; 13(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36899802

RESUMEN

We aimed to investigate the effect of different levels of nutritional restriction on mammary gland development during the embryonic period by gradient nutritional restriction in pregnant female mice. We started the nutritional restriction of 60 female CD-1(ICR) mice from day 9 of gestation based on 100%, 90%, 80%, 70% and 60% of ad libitum intake. After delivery, the weight and body fat of the offspring and the mother were recorded (n = 12). Offspring mammary development and gene expression were explored by whole mount and qPCR. Mammary development patterns of in offspring were constructed using Sholl analysis, principal component analysis (PCA) and regression analysis. We found that: (1) Mild maternal nutritional restriction (90-70% of ad libitum intake) did not affect offspring weight, while body fat percentage was more sensitive to nutritional restriction (lower at 80% ad libitum feeding). (2) A precipitous drop in mammary development and altered developmental patterns occurred when nutritional restriction ranged from 80% to 70% of ad libitum intake. (3) Mild maternal nutritional restriction (90% of ad libitum intake) promoted mammary-development-related gene expression. In conclusion, our results suggest that mild maternal nutritional restriction during gestation contributes to increased embryonic mammary gland development. When maternal nutritional restriction reaches 70% of ad libitum intake, the mammary glands of the offspring show noticeable maldevelopment. Our results help provide a theoretical basis for the effect of maternal nutritional restriction during gestation on offspring mammary development and a reference for the amount of maternal nutritional restriction.

3.
Adv Mater ; 35(17): e2209288, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36787111

RESUMEN

Poor thermodynamic stability and sluggish electrochemical kinetics of metallic Zn anode in aqueous solution greatly hamper its practical application. To solve such problems, to date, various zincophilic surface modification strategies are developed, which can facilitate reversible Zn plating/stripping behavior. However, there is still a lack of systematic and fundamental understanding regarding the metrics of thermodynamics inertia and kinetics zincophilia in selecting zincophilic sites. Herein, hetero-metallic interfaces are prioritized for the first time via optimizing different hetero metals (Fe, Co, Ni, Sn, Bi, Cu, Zn, etc.) and synthetic solvents (ethanol, ethylene glycol, n-propanol, etc.). Specifically, both theoretical simulations and experimental results suggest that this Bi@Zn interface can exhibit high efficiency owing to the thermodynamics inertia and kinetics zincophilia. A best practice for prioritizing zincophilic sites in a more practical metric is also proposed. As a proof of concept, the Bi@Zn anode delivers ultralow overpotential of ≈55 mV at a high rate of 10 mA cm-2 and stable cycle life over 4700 cycles. The elaborated "thermodynamics inertia and kinetics metalphilia" metrics for hetero-metallic interfaces can benchmark the success of other metal-based batteries.

4.
Sci Total Environ ; 855: 158686, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36099943

RESUMEN

Microplastics (MPs) and nanoplastic (NPs) pollution is a global concern due to the massive use of plastic products. Although there have been many studies on the treatments of animals with MPs/NPs, there are few systematic summaries of MPs/NPs translocation and hazards in animals. This review comprehensively summarizes the pathways by which animals are exposed to MPs/NPs in the environment, in particular, to summarize in detail their translocation and hazards in vivo. Studies have shown that MPs/NPs enter the animals' body through water, food, breath and even skin, enter the blood circulation through the lungs and digestive tract, and eventually accumulate in various tissues. After a summary of the studies, we found a high correlation between the tissue accumulation of MPs/NPs and their particle size, with 4-20 µm MPs appearing to be more prone to accumulate in tissues. These MPs/NPs accumulated in animal tissues may be transferred to humans through the food chain. Thus, we summarized the studies on the accumulation of MPs/NPs in livestock and poultry products, showing that MPs/NPs in livestock and poultry products gradually increased with the complexity of processing and packaging processes. There are few reports related to direct contamination of livestock products by MPs/NPs, we hope that this review will bring together the growing body of evidence that MPs/NPs can directly harm human health through the food chain.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Animales , Microplásticos/toxicidad , Plásticos , Contaminantes Químicos del Agua/análisis , Cadena Alimentaria , Contaminación Ambiental
5.
J Anim Sci Technol ; 64(5): 922-936, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36287778

RESUMEN

5-Hydroxytryptamine (5-HT), a monoamine, as a local regulator in the mammary gland is a chemical signal produced by the mammary epithelium cell. In cows, studies have shown that 5-HT is associated with epithelial cell apoptosis during the degenerative phase of the mammary gland. However, studies in other tissues have shown that 5-HT can effectively promote cell viability. Whether 5-HT could have an effect on mammary cell viability in dairy cows is still unknown. The purpose of this study was to determine: (1) effect of 5-HT on the viability of bovine mammary epithelial cells and its related signaling pathways, (2) interaction between prolactin (PRL) and 5-HT on the cell viability. The bovine mammary alveolar cell-T (MAC-T) were cultured with different concentrations of 5-HT for 12, 24, 48 or 72 hours, and then were assayed using cell counting kit-8, polymerase chain reaction (PCR) and immunobloting. The results suggested that 20 µM 5-HT treatment for 12 or 24 h promote cell viability, which was mainly induced by the activation of 5-HT receptor (5-HTR) 1B and 4, because the increase caused by 5-HT vanished when 5-HTR 1B and 4 was blocked by SB224289 and SB204070. And protein expression of mammalian target of rapamycin (mTOR), eukaryotic translation elongation factor 2 (eEF2), janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5) were decreased after blocking 5-HT 1B and 4 receptors. When MAC-T cells were treated with 5-HT and PRL simultaneously for 24 h, both the cell viability and the level of mTOR protein were significantly higher than that cultured with 5-HT or PRL alone. In conclusion, our study suggested that 5-HT promotes the viability of MAC-T cells by 5-HTR 1B and/or 4. Furthermore, there is a reciprocal relationship between PRL and 5-HT.

6.
mSystems ; 7(2): e0142621, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35229649

RESUMEN

A novel plant growth-promoting rhizobacterium (PGPR), which was designated strain BY2G20, was isolated from saline-alkaline soil in Dongying, China. Strain BY2G20 can grow at a NaCl range from 0 to 7% and a pH range from 7 to 9 and can prevent the growth of the phytopathogen Ralstonia solanacearum. Based on its phenotypic and genomic characteristics and phylogenetic analysis, strain BY2G20 represents a novel species of the genus Metabacillus, for which the name Metabacillus dongyingensis sp. nov. is proposed. Comparative genomic analysis of strain BY2G20 with its closely related species exhibited a high level of evolutionary plasticity derived by horizontal gene transfer, which facilitated adaptative evolution. Different evolutionary constraints have operated on the diverse functions of BY2G20, with the gene adapted to saline-alkaline ecosystems experiencing functional constraints. We determined the genetic properties of saline-alkaline tolerance and plant growth promotion, such as cation-proton antiporters, cation transporters, osmoprotectant synthesis and transport, H+-transporting F1F0-ATPase, indole-3-acetic acid production, and secondary metabolite synthesis. We also evaluated the effects of strain BY2G20 on the growth of Zea mays L. (maize) under salt stress. The physiological parameters of maize such as plant height, stem diameter, dry biomass, and fresh biomass were significantly higher after inoculating strain BY2G20 under salt stress, indicating that inoculation with BY2G20 enhanced the growth of maize in saline areas. This study demonstrates that M. dongyingensis sp. nov. BY2G20 is a potential candidate for organic agriculture biofertilizers in saline-alkaline areas. IMPORTANCE Plant growth and yield are adversely affected by soil salinity. PGPRs can promote plant growth and enhance plant tolerance to salt stress. In this study, a saline-alkaline tolerant PGPR strain BY2G20 was isolated from the rhizosphere of Ulmus pumila in Dongying, China. Strain BY2G20 represents a novel species within the genus Metabacillus based on phenotypic, genomic, and phylogenetic analysis. Genomic components have undergone different functional constraints, and the disparity in the evolutionary rate may be associated with the adaptation to a specific niche. Genomic analysis revealed numerous adaptive features of strain BY2G20 to a saline-alkaline environment and rhizosphere, especially genes related to salt tolerance, pH adaptability, and plant growth promotion. Our work also exhibited that inoculation of strain BY2G20 enhanced the growth of maize under salt stress. This study demonstrates that PGPRs play an important role in stimulating salt tolerance in plants and can be used as biofertilizers to enhance the growth of crops in saline-alkaline areas.


Asunto(s)
Suelo , Zea mays , Suelo/química , Ecosistema , Filogenia , Bacterias/genética , Estrés Salino
7.
Comput Struct Biotechnol J ; 20: 975-988, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242288

RESUMEN

The pollution of plastic waste has become an increasingly serious environmental crisis. Recently, plastic has been detected in various kinds of environments, even in human tissues, which is an increasing threat to the ecosystems and humans. In the ocean, the plastic waste is eventually fragmentized into microplastics (MPs) under the disruption of physical and chemical processes. MPs are colonized by microbial communities such as fungi, diatoms, and bacteria, which form biofilms on the surface of the plastic called "plastisphere". In this review, we summarize the studies related to microorganisms in the plastisphere in recent years and describe the microbial species in the plastisphere, mainly including bacteria, fungi, and autotrophs. Secondly, we explore the interactions between MPs and the plastisphere. The depth of MPs in the ocean and the nutrients in the surrounding seawater can have a great impact on the community structure of microorganisms in the plastisphere. Finally, we discuss the types of MP-degrading bacteria in the ocean, and use the "seed bank" theory to speculate on the potential sources of MP-degrading microorganisms. Challenges and future research prospects are also discussed.

8.
ACS Sens ; 5(4): 994-1001, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32174111

RESUMEN

Although volatile organic compound samples can be detected by gas nanosensors in adsorption principles, extreme concentrations of target gases imply the excessive adsorption, which would lead to a long recovery time and even a shortened lifetime. Herein, we report the observations of the ionization current sensing behavior on the volatile organic compounds in an ionization gas sensor with silicon-based nanostructures. The micro ionization gas sensor consists of a pair of silicon microneedle array electrodes covered by nanolayer structures and a microdischarge gas gap. The dynamic response behaviors of the sensors to the exposure of ethanol, acetone, and 2-chloroethyl ethyl sulfide have been carefully scrutinized. The sensor exhibits sound performances to the high-concentration volatile organic compounds with a fast-recovery property and could generate effective responses well at 36 V, namely, the safety operation voltages. It could be well understood by the Jesse effect where small proportion of impurities in gases could lead to an intensive increase in the overall ionization probability. Besides, the reproducibility, recovery time, sensitivity, and selectivity properties have been systematically characterized.


Asunto(s)
Gases/química , Sistemas Microelectromecánicos/métodos , Nanoestructuras/uso terapéutico , Silicio/química , Compuestos Orgánicos Volátiles/química
9.
Animals (Basel) ; 9(10)2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31652592

RESUMEN

The objective of this study was to assess the effect of heat stress on the autophagy and apoptosis of the rumen, abomasum, duodenum, liver and kidney in calves. Two groups of Holstein male calves were selected with similar birth weights and health conditions. Heat stress (HT): Six calves (birth weight 42.2 ± 2.3) were raised from July 15 to August 19. Cooling (CL): Six calves (birth weight 41.5 ± 3.1 kg) were raised from April 10 to May 15. All the calves were euthanized following captive bolt gun stunning at 35 d of age. The expression of protein 1 light chain 3-Ⅱ (LC3-Ⅱ) and caspase3 in the rumen, abomasum, duodenum, liver and kidney were determined by western blotting. In addition, other possible relevant serum biochemical parameters were evaluated. Significant differences were observed in alkaline phosphatase (ALP), albumin (ALB) and glucose (Glu). The results showed that heat stress could increase the autophagy and apoptosis of the kidney, duodenum and abomasum. However, heat stress had no effect on the autophagy and apoptosis of the liver. Additionally, the expression of caspase-3 in the rumen in HT was significantly lower than that in CL. In conclusion, the effects of heat stress on autophagy and apoptosis are organ-specific. The results provide knowledge regarding autophagy and autophagy in calf heat stress management.

10.
Animals (Basel) ; 9(7)2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31266182

RESUMEN

The objectives of this study were to determine the effects of intravenous infusions of L-glutamine (Gln) on the autophagy and apoptosis of duodenum cells in early-weaned calves. Holstein male calves were weaned at day 35 (20 male calves, birth weight 43 ± 1.8 kg; 35 ± 3 d of age) and randomly allocated to four treatments (5 calves/treatment). The treatments were: (1) infusion of NaCl, representing the control group (C); (2) infusion of 10 g/d of Gln solution (L); (3) infusion of 20 g/d of Gln solution (M); and (4) infusion of 40 g/d of Gln solution (H). The solutions were infused for 2 h daily for 3 consecutive days after weaning. All calves were killed on the third day post-weaning. The results showed that the autophagy level of the duodenal cells was increased as the Gln infusions increased from 0 to 20 g/d and dropped with a further increase in dose (40 g/d). We also found that the level of apoptosis was decreased with Gln infusion from 0 to 20 g/d and rose as the dose increased to 40 g/d. This knowledge provides a reference for weaned calf health management.

11.
Sci Rep ; 6: 23319, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26996610

RESUMEN

A p-i-n junction diode constructed by the locally doped network of single-walled carbon nanotubes (SWNTs) was investigated. In this diode, the two opposite ends of the SWNT-network channel were selectively doped by triethyloxonium hexachloroantimonate (OA) and polyethylenimine (PEI) to obtain the air-stable p- and n-type SWNTs respectively while the central area of the SWNT-network remained intrinsic state, resulting in the formation of a p-i-n junction with a strong built-in electronic field in the SWNTs. The results showed that the forward current and the rectification ratio of the diode increased as the doping degree increased. The forward current of the device could also be increased by decreasing the channel length. A high-performance p-i-n junction diode with a high rectification ratio (~10(4)), large forward current (~12.2 µA) and low reverse saturated current (~1.8 nA) was achieved with the OA and PEI doping time of 5 h and 18 h for a channel length of ~6 µm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...