Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.553
Filtrar
1.
Sci Adv ; 10(19): eadi9156, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38718108

RESUMEN

Exosomes are secreted vesicles of ~30 to 150 nm diameter that play important roles in human health and disease. To better understand how cells release these vesicles, we examined the biogenesis of the most highly enriched human exosome marker proteins, the exosomal tetraspanins CD81, CD9, and CD63. We show here that endocytosis inhibits their vesicular secretion and, in the case of CD9 and CD81, triggers their destruction. Furthermore, we show that syntenin, a previously described exosome biogenesis factor, drives the vesicular secretion of CD63 by blocking CD63 endocytosis and that other endocytosis inhibitors also induce the plasma membrane accumulation and vesicular secretion of CD63. Finally, we show that CD63 is an expression-dependent inhibitor of endocytosis that triggers the vesicular secretion of lysosomal proteins and the clathrin adaptor AP-2 mu2. These results suggest that the vesicular secretion of exosome marker proteins in exosome-sized vesicles occurs primarily by an endocytosis-independent pathway.


Asunto(s)
Endocitosis , Exosomas , Tetraspanina 30 , Exosomas/metabolismo , Humanos , Tetraspanina 30/metabolismo , Biomarcadores/metabolismo , Sinteninas/metabolismo , Sinteninas/genética , Tetraspanina 28/metabolismo , Membrana Celular/metabolismo , Complejo 2 de Proteína Adaptadora/metabolismo , Tetraspanina 29/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(22): e2316176121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38771878

RESUMEN

The striato-nigral (Str-SN) circuit is composed of medium spiny neuronal projections that are mainly sent from the striatum to the midbrain substantial nigra (SN), which is essential for regulating motor behaviors. Dysfunction of the Str-SN circuitry may cause a series of motor disabilities that are associated with neurodegenerative disorders, such as Huntington's disease (HD). Although the etiology of HD is known as abnormally expanded CAG repeats of the huntingtin gene, treatment of HD remains tremendously challenging. One possible reason is the lack of effective HD model that resembles Str-SN circuitry deficits for pharmacological studies. Here, we first differentiated striatum-like organoids from human pluripotent stem cells (hPSCs), containing functional medium spiny neurons (MSNs). We then generated 3D Str-SN assembloids by assembling striatum-like organoids with midbrain SN-like organoids. With AAV-hSYN-GFP-mediated viral tracing, extensive MSN projections from the striatum to the SN are established, which formed synaptic connection with GABAergic neurons in SN organoids and showed the optically evoked inhibitory postsynaptic currents and electronic field potentials by labeling the striatum-like organoids with optogenetic virus. Furthermore, these Str-SN assembloids exhibited enhanced calcium activity compared to that of individual striatal organoids. Importantly, we further demonstrated the reciprocal projection defects in HD iPSC-derived assembloids, which could be ameliorated by treatment of brain-derived neurotrophic factor. Taken together, these findings suggest that Str-SN assembloids could be used for identifying MSN projection defects and could be applied as potential drug test platforms for HD.


Asunto(s)
Enfermedad de Huntington , Organoides , Humanos , Enfermedad de Huntington/patología , Enfermedad de Huntington/metabolismo , Organoides/patología , Organoides/metabolismo , Sustancia Negra/patología , Sustancia Negra/metabolismo , Cuerpo Estriado/patología , Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Neuronas/patología , Diferenciación Celular , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Células Madre Pluripotentes/metabolismo , Optogenética
4.
J Ethnopharmacol ; 331: 118279, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38705425

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Leonurus japonicus Houtt (L. japonicus, Chinese motherwort), known as Yi Mu Cao which means "good for women", has long been widely used in China and other Asian countries to alleviate gynecological disorders, often characterized by estrogen dysregulation. It has been used for the treatment of polycystic ovary syndrome (PCOS), a common endocrine disorder in women but the underlying mechanism remains unknown. AIM OF THE STUDY: The present study was designed to investigate the effect and mechanism of flavonoid luteolin and its analog luteolin-7-methylether contained in L. japonicus on aromatase, a rate-limiting enzyme that catalyzes the conversion of androgens to estrogens and a drug target to induce ovulation in PCOS patients. MATERIALS AND METHODS: Estrogen biosynthesis in human ovarian granulosa cells was examined using ELISA. Western blots were used to explore the signaling pathways in the regulation of aromatase expression. Transcriptomic analysis was conducted to elucidate the potential mechanisms of action of compounds. Finally, animal models were used to assess the therapeutic potential of these compounds in PCOS. RESULTS: Luteolin potently inhibited estrogen biosynthesis in human ovarian granulosa cells stimulated by follicle-stimulating hormone. This effect was achieved by decreasing cAMP response element-binding protein (CREB)-mediated expression of aromatase. Mechanistically, luteolin and luteolin-7-methylether targeted tumor progression locus 2 (TPL2) to suppress mitogen-activated protein kinase 3/6 (MKK3/6)-p38 MAPK-CREB pathway signaling. Transcriptional analysis showed that these compounds regulated the expression of different genes, with the MAPK signaling pathway being the most significantly affected. Furthermore, luteolin and luteolin-7-methylether effectively alleviated the symptoms of PCOS in mice. CONCLUSIONS: This study demonstrates a previously unrecognized role of TPL2 in estrogen biosynthesis and suggests that luteolin and luteolin-7-methylether have potential as novel therapeutic agents for the treatment of PCOS. The results provide a foundation for further development of these compounds as effective and safe therapies for women with PCOS.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38714787

RESUMEN

Relapse is a major challenge in the treatment of drug addiction, and exercise has been shown to decrease relapse to drug seeking in animal models. However, the neural circuitry mechanisms by which exercise inhibits morphine relapse remain unclear. In this study, we report that 4-week treadmill training prevented morphine conditioned place preference (CPP) expression during abstinence by acting through the nucleus accumbens (NAc)-ventral pallidum (VP) pathway. We found that neuronal excitability was reduced in D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) following repeated exposure to morphine and forced abstinence. Enhancing the excitability of NAc D2-MSNs via treadmill training decreased the expression of morphine CPP. We also found that the effects of treadmill training were mediated by decreasing enkephalin levels and that restoring opioid modulation of GABA neurotransmission in the VP, which increased neurotransmitter release from NAc D2-MSNs to VP, decreased morphine CPP. Our findings suggest the inhibitory effect of exercise on morphine CPP is mediated by reversing morphine-induced neuroadaptations in the NAc-to-VP pathway.

6.
Brain Commun ; 6(3): fcae144, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756537

RESUMEN

The neuropathological mechanisms underlying the association between sleep duration and mild cognitive impairment remain poorly understood. This population-based study included 2032 dementia-free people (age ≥ 60 years; 55.1% women) derived from participants in the Multimodal Interventions to Delay Dementia and Disability in Rural China; of these, data were available in 841 participants for Alzheimer's plasma biomarkers (e.g. amyloid-ß, total tau and neurofilament light chain), 1044 for serum microvascular biomarkers (e.g. soluble adhesion molecules) and 834 for brain MRI biomarkers (e.g. whiter matter, grey matter, hippocampus, lacunes, enlarged perivascular spaces and white matter hyperintensity WMH). We used electrocardiogram-based cardiopulmonary coupling analysis to measure sleep duration, a neuropsychological test battery to assess cognitive function and the Petersen's criteria to define mild cognitive impairment. Data were analysed with multivariable logistic and general linear models. In the total sample (n = 2032), 510 participants were defined with mild cognitive impairment, including 438 with amnestic mild cognitive impairment and 72 with non-amnestic mild cognitive impairment. Long sleep duration (>8 versus 6-8 h) was significantly associated with increased likelihoods of mild cognitive impairment and non-amnestic mild cognitive impairment and lower scores in global cognition, verbal fluency, attention and executive function (Bonferroni-corrected P < 0.05). In the subsamples, long sleep duration was associated with higher plasma amyloid-ß40 and total tau, a lower amyloid-ß42/amyloid-ß40 ratio and smaller grey matter volume (Bonferroni-corrected P < 0.05). Sleep duration was not significantly associated with serum-soluble adhesion molecules, white matter hyperintensity volume, global enlarged perivascular spaces and lacunes (P > 0.05). Alzheimer's and neurodegenerative pathologies may represent common pathways linking long sleep duration with mild cognitive impairment and low cognition in older adults.

7.
Biomaterials ; 309: 122609, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38754290

RESUMEN

The challenge of drug resistance in intrahepatic cholangiocarcinoma (ICC) is intricately linked with lipid metabolism reprogramming. The hepatic lipase (HL) and the membrane receptor CD36 are overexpressed in BGJ398-resistant ICC cells, while they are essential for lipid uptake, further enhancing lipid utilization in ICC. Herein, a metal-organic framework-based drug delivery system (OB@D-pMOF/CaP-AC, DDS), has been developed. The specifically designed DDS exhibits a successive targeting property, enabling it to precisely target ICC cells and their mitochondria. By specifically targeting the mitochondria, DDS produces reactive oxygen species (ROS) through its sonodynamic therapy effect, achieving a more potent reduction in ATP levels compared to non-targeted approaches, through the impairment of mitochondrial function. Additionally, the DDS strategically minimizes lipid uptake through the incorporation of the anti-HL drug, Orlistat, and anti-CD36 monoclonal antibody, reducing lipid-derived energy production. This dual-action strategy on both mitochondria and lipids can hinder energy utilization to restore drug sensitivity to BGJ398 in ICC. Moreover, an orthotopic mice model of drug-resistant ICC was developed, which serves as an exacting platform for evaluating the multifunction of designed DDS. Upon in vivo experiments with this model, the DDS demonstrated exceptional capabilities in suppressing tumor growth, reprogramming lipid metabolism and improving immune response, thereby overcoming drug resistance. These findings underscore the mitochondria-targeted DDS as a promising and innovative solution in ICC drug resistance.

8.
Tree Physiol ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691446

RESUMEN

Legumes account for a significant proportion of plants in the terrestrial ecosystems. Nitrogen-fixing capability of certain legumes is a pivotal trait that contributes to their ecological dominance. Yet, the functional traits and trait relationships between N-fixer and non-N-fixer legumes are poorly understood. Here, we investigated 27 functional traits associated with morphology, nutrients, hydraulic conductance, and photosynthesis in 42 woody legumes (19 N-fixers and 23 non-N-fixers) in a common garden. Our results showed that N-fixers had higher specific leaf area, photosynthetic phosphorus (P) use efficiency, leaf nitrogen (N) and iron concentrations on both area and mass basis, N/P ratio, and carbon (C) to P ratio, but lower wood density, area-based maximum photosynthetic rate (Aa), photosynthetic N use efficiency, leaf mass- and area-based P and molybdenum and area-based boron concentrations, and C/N ratio, compared to non-N-fixers. The mass-based maximum photosynthetic rate (Am), stomatal conductance (gs), intrinsic water use efficiency (WUEi), mass- and area-based leaf potassium and mass-based boron concentrations, leaf hydraulic conductance (Kleaf), and whole-shoot hydraulic conductance (Kshoot) showed no difference between N-fixers and non-N-fixers. Significant positive associations between all hydraulic and photosynthetic trait pairs were found in N-fixers, but only one pair (Kshoot-Aa) in non-N-fixers, suggesting that hydraulic conductance plays a more important role in mediating photosynthetic capacity in N-fixers compared to non-N-fixers. Higher mass-based leaf N was linked to lower time-integrated gs and higher WUEi among non-N-fixer legumes or all legumes pooled after phylogeny was considered. Moreover, mass-based P concentration was positively related to Am and gs in N-fixers, but not in non-N-fixers, indicating that the photosynthetic capacity and stomatal conductance in N-fixers were more dependent on leaf P status than in non-N-fixers. These findings expand our understanding of the trait-based ecology within and across N-fixer and non-N-fixer legumes in tropics.

9.
BMC Med ; 22(1): 147, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561764

RESUMEN

BACKGROUND: Thyroid nodule (TN) patients in China are subject to overdiagnosis and overtreatment. The implementation of existing technologies such as thyroid ultrasonography has indeed contributed to the improved diagnostic accuracy of TNs. However, a significant issue persists, where many patients undergo unnecessary biopsies, and patients with malignant thyroid nodules (MTNs) are advised to undergo surgery therapy. METHODS: This study included a total of 293 patients diagnosed with TNs. Differential methylation haplotype blocks (MHBs) in blood leukocytes between MTNs and benign thyroid nodules (BTNs) were detected using reduced representation bisulfite sequencing (RRBS). Subsequently, an artificial intelligence blood leukocyte DNA methylation (BLDM) model was designed to optimize the management and treatment of patients with TNs for more effective outcomes. RESULTS: The DNA methylation profiles of peripheral blood leukocytes exhibited distinctions between MTNs and BTNs. The BLDM model we developed for diagnosing TNs achieved an area under the curve (AUC) of 0.858 in the validation cohort and 0.863 in the independent test cohort. Its specificity reached 90.91% and 88.68% in the validation and independent test cohorts, respectively, outperforming the specificity of ultrasonography (43.64% in the validation cohort and 47.17% in the independent test cohort), albeit with a slightly lower sensitivity (83.33% in the validation cohort and 82.86% in the independent test cohort) compared to ultrasonography (97.62% in the validation cohort and 100.00% in the independent test cohort). The BLDM model could correctly identify 89.83% patients whose nodules were suspected malignant by ultrasonography but finally histological benign. In micronodules, the model displayed higher specificity (93.33% in the validation cohort and 92.00% in the independent test cohort) and accuracy (88.24% in the validation cohort and 87.50% in the independent test cohort) for diagnosing TNs. This performance surpassed the specificity and accuracy observed with ultrasonography. A TN diagnostic and treatment framework that prioritizes patients is provided, with fine-needle aspiration (FNA) biopsy performed only on patients with indications of MTNs in both BLDM and ultrasonography results, thus avoiding unnecessary biopsies. CONCLUSIONS: This is the first study to demonstrate the potential of non-invasive blood leukocytes in diagnosing TNs, thereby making TN diagnosis and treatment more efficient in China.


Asunto(s)
Neoplasias de la Tiroides , Nódulo Tiroideo , Humanos , Nódulo Tiroideo/diagnóstico por imagen , Nódulo Tiroideo/genética , Estudios Prospectivos , Inteligencia Artificial , Ultrasonografía , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/cirugía , Estudios Retrospectivos
10.
Small ; : e2310064, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607265

RESUMEN

Limited by the strong oxidation environment and sluggish reconstruction process in oxygen evolution reaction (OER), designing rapid self-reconstruction with high activity and stability electrocatalysts is crucial to promoting anion exchange membrane (AEM) water electrolyzer. Herein, trace Fe/S-modified Ni oxyhydroxide (Fe/S-NiOOH/NF) nanowires are constructed via a simple in situ electrochemical oxidation strategy based on precipitation-dissolution equilibrium. In situ characterization techniques reveal that the successful introduction of Fe and S leads to lattice disorder and boosts favorable hydroxyl capture, accelerating the formation of highly active γ-NiOOH. The Density Functional Theory (DFT) calculations have also verified that the incorporation of Fe and S optimizes the electrons redistribution and the d-band center, decreasing the energy barrier of the rate-determining step (*O→*OOH). Benefited from the unique electronic structure and intermediate adsorption, the Fe/S-NiOOH/NF catalyst only requires the overpotential of 345 mV to reach the industrial current density of 1000 mA cm-2 for 120 h. Meanwhile, assembled AEM water electrolyzer (Fe/S-NiOOH//Pt/C-60 °C) can deliver 1000 mA cm-2 at a cell voltage of 2.24 V, operating at the average energy efficiency of 71% for 100 h. In summary, this work presents a rapid self-reconstruction strategy for high-performance AEM electrocatalysts for future hydrogen economy.

11.
ESC Heart Fail ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38638078

RESUMEN

AIMS: The PIONEER-HF and PARAGLIDE-HF trials aimed to determine the efficacy and safety of the in-hospital initiation of sacubitril/valsartan in patients hospitalized for AHF. However, whether the inclusion and exclusion criteria of the trials apply to patients encountered in real-world routine care is unclear. This study aimed to investigate the applicability of the PIONEER-HF and PARAGLIDE-HF trials to real-world AHF patients. METHODS AND RESULTS: We identified 28 293 AHF hospitalized patients between August 2008 to August 2017 from the Chang Gung Research Database and classified them into four groups based on left ventricular ejection fraction (LVEF) and trial criteria. Cox proportional hazards models were used to compare the risk of HF hospitalization and cardiovascular (CV) death. We defined PIONEER-HF eligible (n = 3683) and non-eligible (n = 3502) patients with an LVEF ≤40%, and PARAGLIDE-HF eligible (n = 5191) and non-eligible (n = 5832) patients with an LVEF >40%. Over a mean follow-up of 3.5 years, the PIONEER-HF non-eligible and eligible groups exhibited similar rates of HF hospitalization and CV death (41.1% vs. 41.8%, adjusted hazard ratio [aHR]: 0.95; 95% CI: 0.88-1.04). No significant difference was found in the composite outcome between PARAGLIDE-HF non-eligible and eligible groups (36.7% vs. 38.6%; aHR: 0.97; 95% CI: 0.90-1.04). CONCLUSIONS: Using trial criteria, only 31.3% of AHF patients were eligible for sacubitril-valsartan. Yet, non-eligible patients demonstrated similar outcomes to eligible patients, indicating a need for further evaluation of sacubitril-valsartan benefits in non-eligible AHF patients.

12.
Brain ; 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643019

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disease with uncertain genetic predisposition in most sporadic cases. Spatial architecture of cell types and gene expression is the basis of cell-cell interactions, biological function and disease pathology, but is not well investigated in human motor cortex, a key ALS relevant brain region. Recent studies indicated single nucleus transcriptomic features of motor neuron vulnerability in ALS motor cortex. However, it remains largely unclear what is the brain regional vulnerability of ALS-associated genes, and what is the genetic link between region-specific genes and ALS risk. Here, we developed an entropy-weighted differential gene expression matrix-based tool (SpatialE) to identify the spatial enrichment of gene sets in spatial transcriptomics (ST). We benchmarked SpatialE against another enrichment tool (Multimodal Intersection Analysis, MIA) using ST data from both human and mouse brain tissues. To investigate regional vulnerability, we analyzed three human motor cortex and two dorsolateral prefrontal cortex tissues for spatial enrichment of ALS-associated genes. We also used Cell2location to estimate the abundance of cell types in ALS-related cortex layers. To dissect the link of regionally expressed genes and ALS risk, we performed burden analyses of rare loss-of-function (LOF) variants detected by whole-genome sequencing in ALS patients and controls, and then analyzed differential gene expression in the TargetALS RNA-seq dataset. SpatialE showed more accurate and specific spatial enrichment of regional cell type markers than MIA in both mouse brain and human dorsolateral prefrontal cortex. Spatial transcriptomic analyses of human motor cortex showed heterogenous cell types and spatial gene expression profiles. We found that 260 manually curated ALS-associated genes are significantly enriched in layer 5 (L5) motor cortex, with abundant expression of upper motor neurons and L5 excitatory neurons. Burden analyses of rare LOF variants in L5-associated genes nominated NOMO1 as a novel ALS-associated gene in a combined sample set of 6,814 ALS patients and 3,324 controls (P = 0.029). Gene expression analyses in central nervous system tissues revealed down-regulation of NOMO1 in ALS, which is consistent with a LOF disease mechanism. In conclusion, our integrated ST and genomic analyses identified regional brain vulnerability in ALS and the association of a L5 gene (NOMO1) with ALS risk.

13.
Ultrasound Med Biol ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38594125

RESUMEN

OBJECTIVE: This study aimed to investigate the impact of microbubble degradation and flow velocity on Sub-Harmonic Aided Pressure Estimation (SHAPE), and to explore the correlation between subharmonic amplitude and pressure as a single factor. METHODS: We develop an open-loop vascular phantom platform system and utilize a commercial ultrasound machine and microbubbles for subharmonic imaging. Subharmonic amplitude was measured continuously at constant pressure and flow velocity to assess the impact of microbubble degradation. Flow velocity was varied within a range of 4-14 cm/s at constant pressure to investigate its relationship to subharmonic amplitude. Furthermore, pressure was varied within a range of 10-110 mm Hg at constant flow velocity to assess its isolated effect on subharmonic amplitude. RESULTS: Under constant pressure and flow velocity, subharmonic amplitude exhibited a continuous decrease at an average rate of 0.221 dB/min, signifying ongoing microbubble degradation during the experimental procedures. Subharmonic amplitude demonstrated a positive correlation with flow velocity, with a variation ratio of 0.423 dB/(cm/s). Under controlled conditions of microbubble degradation and flow velocity, a strong negative linear correlation was observed between pressure and subharmonic amplitude across different Mechanical Index (MI) settings (all R2 > 0.90). The sensitivity of SHAPE was determined to be 0.025 dB/mmHg at an MI of 0.04. CONCLUSION: The assessment of SHAPE sensitivity is affected by microbubble degradation and flow velocity. Excluding the aforementioned influencing factors, a strong linear negative correlation between pressure and subharmonic amplitude was still evident, albeit with a sensitivity coefficient lower than previously reported values.

15.
Sci Adv ; 10(14): eadj7666, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38569041

RESUMEN

Inflammation-associated fibroblasts (IAFs) are associated with progression and drug resistance of chronic inflammatory diseases such as inflammatory bowel disease (IBD), but their direct impact on epithelial cells is unknown. Here, we developed an in vitro model whereby human colon fibroblasts are induced by specific cytokines and recapitulate key features of IAFs in vivo. When cocultured with patient-derived colon organoids (colonoids), IAFs induced rapid colonoid expansion and barrier disruption due to swelling and rupture of individual epithelial cells. Colonoids cocultured with IAFs also show increased DNA damage, mitotic errors, and proliferation arrest. These IAF-induced epithelial defects are mediated by a paracrine pathway involving prostaglandin E2 and its receptor EP4, leading to protein kinase A -dependent activation of the cystic fibrosis transmembrane conductance regulator. EP4-specific chemical inhibitors effectively prevented IAF-induced colonoid swelling and restored normal proliferation and genome stability. These findings reveal a mechanism by which IAFs could promote and perpetuate IBD and suggest a therapeutic avenue to mitigate inflammation-associated epithelial injury.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Prostaglandinas , Humanos , Epitelio/metabolismo , Inflamación , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/metabolismo , Fibroblastos/metabolismo
16.
Orphanet J Rare Dis ; 19(1): 157, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38610052

RESUMEN

BACKGROUND: ABCB4 gene-related cholestatic liver diseases have a wide spectrum of clinical and genetic variations. The correlation between genotype and clinical phenotype still unclear. This study retrospectively analyzed the clinical and pathological characteristics of 23 patients with ABCB4 gene-related cholestatic liver diseases. Next-generation sequencing was used to identify the genetic causes. RESULTS: The 23 included patients (15 children and 8 adults) were diagnosed as progressive familial intrahepatic cholestasis type 3 (PFIC3), drug-induced liver injury (DILI), cirrhosis cholestasis, cirrhosis, and mild liver fibrosis. Nineteen patients underwent liver pathological examination of the liver, exhibiting fibrosis, small bile duct hyperplasia, CK7(+), Cu(+), bile duct deletion, and cirrhosis. Thirty ABCB4 variants were identified, including 18 novel variants. CONCLUSION: ABCB4 gene-related cholestatic liver diseases have a wide spectrum of clinical and genetic variations. Biallelic ABCB4 mutation carriers tended to severe PFIC3, which mostly occurs in children; while ABCB4 non-biallelic variants can lead to milder ICP, LACP, DILI or overlapping, mostly in adults. Thus, the ABCB4 genotype has a specific correlation with the phenotype, but there are exceptions. Non-biallelic null mutations can cause severe diseases. The mechanisms underlying this genetic phenotype require further investigation.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Colestasis Intrahepática , Colestasis , Adulto , Niño , Humanos , Subfamilia B de Transportador de Casetes de Unión a ATP/deficiencia , China , Colestasis/genética , Colestasis Intrahepática/genética , Cirrosis Hepática , Estudios Retrospectivos
17.
Diagnostics (Basel) ; 14(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611619

RESUMEN

This review describes the appearance of extrapulmonary tuberculosis manifestations in comprehensive and multiparametric ultrasound imaging. The aim is to increase awareness of typical ultrasound findings regarding extrapulmonary tuberculosis, correlate those with pathological features, and facilitate differential diagnosis. Point of care ultrasound protocols can be used as a screening method in high-risk populations, although the negative findings do not exclude tuberculosis. Conversely, the diagnosis of extrapulmonary tuberculosis can never be made using ultrasound alone, as many ultrasound findings in extrapulmonary tuberculosis are non-specific. However, ultrasound-based sampling techniques can significantly facilitate the collection of samples for microbiological or molecular proof of tuberculosis, as well as facilitating the establishment of alternative diagnoses.

18.
Schizophrenia (Heidelb) ; 10(1): 44, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589422

RESUMEN

Schizophrenia (SCZ), as a neurodevelopmental disorder and devastating disease, affects approximately 1% of the world population. Although numerous studies have attempted to elucidate the causes of SCZ occurrence, it is not clearly understood. Recently, the emerging roles of the gut microbiota in a range of brain disorders, including SCZ, have attracted much attention. While the molecular mechanism of gut microbiota in regulating the pathogenesis of SCZ is still lacking. Here, we first confirmed the difference of gut microbiome between SCZ patients and healthy controls, and then, we performed fecal microbiota transplantation (FMT) to clarify the roles of SCZ patients-derived microbiota in a specific pathogen free (SPF) mice model. 16 S rDNA sequencing confirmed that a significant difference of gut microbiome was present between two groups of FMT mice, which has a similar trend with the above human gut microbiome. Furthermore, we found that transplantation of fecal microbiota from SCZ patients into SPF mice was sufficient to induce schizophrenia-like (SCZ-like) symptoms, such as deficits in sociability and hyperactivity. Furthermore, the brains of mice colonized with SCZ microbiota displayed dysregulated transcript response and alternative splicing of SCZ-relevant genes. Moreover, 10 key genes were identified to be correlated with SCZ by an integrative transcriptome data analysis. Finally, 4 key genes were identified to be correlated with the 12 differential genera between two groups of FMT mice. Our results thus demonstrated that the gut microbiome might modify the transcriptomic profile in the brain, thereby modulating social behavior, and our present study can help better understand the link between gut microbiota and SCZ pathogenesis through the gut-brain axis.

19.
Zhongguo Fei Ai Za Zhi ; 27(3): 161-169, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38590190

RESUMEN

BACKGROUND: Lung cancer is a common malignant tumor of the lung. To explore the molecular mechanism of the occurrence and development of lung cancer is a hot topic in current research. Cyclic RNA D1 (CircCCND1) is highly expressed in lung cancer and may be a potential target for the treatment of lung cancer. The aim of this study was to investigate the effect of CircCCND1 on the malignant biological behaviors of lung cancer cells by regulating the miR-340-5p/transforming growth factor ß-induced factor homeobox 1 (TGIF1) axis. METHODS: The expression of CircCCND1, miR-340-5p, and TGIF1 mRNA in human normal lung epithelial cells BEAS-2B and human lung cancer H446 cells were detected. H446 cells cultured in vitro were randomly divided into control group, CircCCND1 siRNA group, miR-340-5p mimics group, negative control group, and CircCCND1 siRNA+miR-340-5p inhibitor group. Cell proliferation, mitochondrial membrane potential, apoptosis, migration, and invasion were detected, and the expressions of CircCCND1, miR-340-5p, TGIF1 mRNA, BCL2-associated X protein (Bax), cleaved Caspase-3, N-cadherin, E-cadherin, and TGIF1 proteins in each group were detected. The targeting relationship of miR-340-5p with CircCCND1 and TGIF1 was verified. RESULTS: Compared with BEAS-2B cells, CircCCND1 and TGIF1 mRNA were increased in H446 cells, and miR-340-5p expression was decreased (P<0.05). Knocking down CircCCND1 or up-regulating the expression of miR-340-5p inhibited the proliferation, migration and invasion of H446 cells, decreased the expression of TGIF1 mRNA and TGIF1 protein, and promoted cell apoptosis. Down-regulation of miR-340-5p could antagonize the inhibitory effect of CircCCND1 knockdown on the malignant biological behavior of H446 lung cancer cells. CircCCND1 may target the down-regulation of miR-340-5p, and miR-340-5p may target the down-regulation of TGIF1. CONCLUSIONS: Knocking down CircCCND1 can inhibit the malignant behaviors of lung cancer H446 cells, which may be achieved through the regulation of miR-340-5p/TGIF1 axis.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/genética , MicroARNs/metabolismo , Pulmón/patología , ARN Mensajero , ARN Interferente Pequeño , Proliferación Celular/genética , Movimiento Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas Represoras/genética , Proteínas de Homeodominio/genética
20.
J Ethnopharmacol ; 331: 118237, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38688355

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Bu-Zhong-Yi-Qi Decoction(BZYQD) is a traditional formula commonly used in China, known for its effects in tonifying Qi and raising Yang. It can relieve symptoms of cognitive impairment such as forgetfulness and lack of concentration caused by qi deficiency, which is common in aging and debilitating. However, much of the current research on BZYQD has been focused on its impact on the digestive system, leaving its molecular mechanisms in improving cognitive function largely unexplored. AIM OF THE STUDY: Cognitive decline in the aging central nervous system is intrinsically linked to oxidative damage. This study aims to investigate the therapeutic mechanism of BZYQD in treating mild cognitive impairment caused by qi deficiency, particularly through repair of mitochondrial oxidative damage. MATERIALS AND METHODS: A rat model of mild cognitive impairment (MCI) was established by administering reserpine subcutaneously for two weeks, followed by a two-week treatment with BZYQD/GBE. In vitro experiments were conducted to assess the effects of BZYQD on neuronal cells using a H2O2-induced oxidative damage model in PC12 cells. The open field test and the Morris water maze test evaluated the cognitive and learning memory abilities of the rats. HE staining and TEM were employed to observe morphological changes in the hippocampus and its mitochondria. Mitochondrial activity, ATP levels, and cellular viability were measured using assay kits. Protein expression in the SIRT3/MnSOD/OGG1 pathway was analyzed in tissues and cells through western blotting. Levels of 8-OH-dG in mitochondria extracted from tissues and cells were quantified using ELISA. Mitochondrial morphology in PC12 cells was visualized using Mito Red, and mitochondrial membrane potential was assessed using the JC-1 kit. RESULTS: BZYQD treatment significantly improved cognitive decline caused by reserpine in rats, as well as enhanced mitochondrial morphology and function in the hippocampus. Our findings indicate that BZYQD mitigates mtDNA oxidative damage in rats by modulating the SIRT3/MnSOD/OGG1 pathway. In PC12 cells, BZYQD reduced oxidative damage to mitochondria and mtDNA in H2O2-induced conditions and was associated with changes in the SIRT3/MnSOD/OGG1 pathway. CONCLUSION: BZYQD effectively counteracts reserpine-induced mild cognitive impairment and ameliorates mitochondrial oxidative stress damage through the SIRT3/MnSOD/OGG1 pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA