Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 11365, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443120

RESUMEN

Structural metallic materials with interfaces of immiscible materials provide opportunities to design and tailor the microstructures for desired mechanical behavior. Metallic microstructures with plasticity contributors of the FCC and BCC phases show significant promise for damage-tolerant applications due to their enhanced strengths and thermal stability. A fundamental understanding of the dynamic failure behavior is needed to design and tailor these microstructures with desired mechanical responses under extreme environments. This study uses molecular dynamics (MD) simulations to characterize plasticity contributors for various interface microstructures and the damage evolution behavior of FCC/BCC laminate microstructures. This study uses six model Cu/Ta interface systems with different orientation relationships that are as- created, and pre-deformed to understand the modifications in the plasticity contributions and the void nucleation/evolution behavior. The results suggest that pre-existing misfit dislocations and loading orientations (perpendicular to and parallel to the interface) affect the activation of primary and secondary slip systems. The dynamic strengths are observed to correlate with the energy of the interfaces, with the strengths being highest for low-energy interfaces and lowest for high-energy interfaces. However, the presence of pre-deformation of these interface microstructures affects not only the dynamic strength of the microstructures but also the correlation with interface energy.


Asunto(s)
Ambientes Extremos , Luxaciones Articulares , Humanos , Modelos Biológicos , Simulación de Dinámica Molecular
2.
ACS Nano ; 17(13): 12603-12615, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37350454

RESUMEN

Despite much technical progress achieved so far, the exact surface and shape evolution during wet chemical etching is less unraveled, especially in ionically bonded ceramics. Herein, by using in situ liquid cell transmission electron microscopy, a repeated two-stage anisotropic and pulsating periodic etching dynamic is discovered during the pencil shape evolution of a single crystal ZnO nanorod in aqueous hydrochloric acid. Specifically, the nanopencil tip shrinks at a slower rate along [0001̅] than that along the ⟨101̅0⟩ directions, resulting in a sharper ZnO pencil tip. Afterward, rapid tip dissolution happens due to accelerated etching rates along various crystal directions. Concurrently, the vicinal base region of the original nanopencil tip emerges as a new tip followed by the repeated sequence of tip shrinking and removal. The high-index surfaces, such as {101̅m} (m = 0, 1, 2, or 3) and {21̅ 1̅n} (n = 0, 1, 2, or 3), are found to preferentially expose in different ratios. Our 3D electron tomography, convergent beam electron diffraction, middle-angle bright-field STEM, and XPS results indicate the dissociative Cl- species were bound to the Zn-terminated tip surfaces. Furthermore, DFT calculation suggests the preferential Cl- passivation over the {101̅1} and (0001) surfaces of lower energy than others, leading to preferential surface exposures and the oscillatory variation of different facet etching rates. The boosted reactivity due to high-index nanoscale surface exposures is confirmed by comparatively enhanced chemical sensing and CO2 hydrogenation activity. These findings provide an in-depth understanding of anisotropic wet chemical etching of ionic nanocrystals and offer a design strategy for advanced functional materials.

3.
Sci Rep ; 13(1): 5408, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012258

RESUMEN

Transition metal dichalcogenides (TMDs) are a class of 2D materials demonstrating promising properties, such as high capacities and cycling stabilities, making them strong candidates to replace graphitic anodes in lithium-ion batteries. However, certain TMDs, for instance, MoS2, undergo a phase transformation from 2H to 1T during intercalation that can affect the mobility of the intercalating ions, the anode voltage, and the reversible capacity. In contrast, select TMDs, for instance, NbS2 and VS2, resist this type of phase transformation during Li-ion intercalation. This manuscript uses density functional theory simulations to investigate the phase transformation of TMD heterostructures during Li-, Na-, and K-ion intercalation. The simulations suggest that while stacking MoS2 layers with NbS2 layers is unable to limit this 2H → 1T transformation in MoS2 during Li-ion intercalation, the interfaces effectively stabilize the 2H phase of MoS2 during Na- and K-ion intercalation. However, stacking MoS2 layers with VS2 is able to suppress the 2H → 1T transformation of MoS2 during the intercalation of Li, Na, and K-ions. The creation of TMD heterostructures by stacking MoS2 with layers of non-transforming TMDs also renders theoretical capacities and electrical conductivities that are higher than that of bulk MoS2.

5.
ACS Nano ; 16(4): 6468-6479, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35413193

RESUMEN

High-temperature oxidation mechanisms of metallic nanoparticles have been extensively investigated; however, it is challenging to determine whether the kinetic modeling is applicable at the nanoscale and how the differences in nanoparticle size influence the oxidation mechanisms. In this work, we study thermal oxidation of pristine Ni nanoparticles ranging from 4 to 50 nm in 1 bar 1%O2/N2 at 600 °C using in situ gas-cell environmental transmission electron microscopy. Real-space in situ oxidation videos revealed an unexpected nanoparticle surface refacetting before oxidation and a strong Ni nanoparticle size dependence, leading to distinct structural development during the oxidation and different final NiO morphology. By quantifying the NiO thickness/volume change in real space, individual nanoparticle-level oxidation kinetics was established and directly correlated with nanoparticle microstructural evolution with specified fast and slow oxidation directions. Thus, for the size-dependent Ni nanoparticle oxidation, we propose a unified oxidation theory with a two-stage oxidation process: stage 1: dominated by the early NiO nucleation (Avrami-Erofeev model) and stage 2: the Wagner diffusion-balanced NiO shell thickening (Wanger model). In particular, to what extent the oxidation would proceed into stage 2 dictates the final NiO morphology, which depends on the Ni starting radius with respect to the critical thickness under given oxidation conditions. The overall oxidation duration is controlled by both the diffusivity of Ni2+ in NiO and the Ni in Ni self-diffusion. We also compare the single-particle kinetic curve with the collective one and discuss the effects of nanoparticle size differences on kinetic model analysis.

6.
Sci Rep ; 11(1): 9872, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972567

RESUMEN

During the various stages of shock loading, many transient modes of deformation can activate and deactivate to affect the final state of a material. In order to fundamentally understand and optimize a shock response, researchers seek the ability to probe these modes in real-time and measure the microstructural evolutions with nanoscale resolution. Neither post-mortem analysis on recovered samples nor continuum-based methods during shock testing meet both requirements. High-speed diffraction offers a solution, but the interpretation of diffractograms suffers numerous debates and uncertainties. By atomistically simulating the shock, X-ray diffraction, and electron diffraction of three representative BCC and FCC metallic systems, we systematically isolated the characteristic fingerprints of salient deformation modes, such as dislocation slip (stacking faults), deformation twinning, and phase transformation as observed in experimental diffractograms. This study demonstrates how to use simulated diffractograms to connect the contributions from concurrent deformation modes to the evolutions of both 1D line profiles and 2D patterns for diffractograms from single crystals. Harnessing these fingerprints alongside information on local pressures and plasticity contributions facilitate the interpretation of shock experiments with cutting-edge resolution in both space and time.

7.
Sci Rep ; 11(1): 9014, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33907244

RESUMEN

Li-ion batteries function by Li intercalating into and through the layered electrode materials. Intercalation is a solid-state interaction resulting in the formation of new phases. The new observations presented here reveal that at the nanoscale the intercalation mechanism is fundamentally different from the existing models and is actually driven by nonuniform phase distributions rather than the localized Li concentration: the lithiation process is a 'distribution-dependent' phenomena. Direct structure imaging of 2H and 1T dual-phase microstructures in lithiated MoS2 and WS2 along with the localized chemical segregation has been demonstrated in the current study. Li, a perennial challenge for the TEM, is detected and imaged using a low-dose, direct-electron detection camera on an aberration-corrected TEM and confirmed by image simulation. This study shows the presence of fully lithiated nanoscale domains of 2D host matrix in the vicinity of Li-lean regions. This confirms the nanoscale phase formation followed by Oswald ripening, where the less-stable smaller domains dissolves at the expense of the larger and more stable phases.

8.
ACS Sens ; 5(9): 2915-2924, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32786375

RESUMEN

Two-dimensional titanium carbide MXenes, Ti3C2Tx, possess high surface area coupled with metallic conductivity and potential for functionalization. These properties make them especially attractive for the highly sensitive room-temperature electrochemical detection of gas analytes. However, these extraordinary materials have not been thoroughly investigated for the detection of volatile organic compounds (VOCs), many of which hold high relevance for disease diagnostics and environmental protection. Furthermore, the insufficient interlayer spacing between MXene nanoflakes could limit their applicability and the use of heteroatoms as dopants could help overcome this challenge. Here, we report that S-doping of Ti3C2Tx MXene leads to a greater gas-sensing performance to VOCs compared to their undoped counterparts, with unique selectivity to toluene. After S-doped and pristine materials were synthesized, characterized, and used as electrode materials, the as-fabricated sensors were subjected to room-temperature dynamic impedimetric testing in the presence of VOCs with different functional groups (ethanol, hexane, toluene, and hexyl-acetate). Unique selectivity to toluene was obtained by both undoped and doped Ti3C2Tx MXenes, but an enhancement of response in the range of ∼214% at 1 ppm to ∼312% at 50 ppm (3-4 folds increase) was obtained for the sulfur-doped sensing material. A clear notable response to 500 ppb toluene was also obtained with sulfur-doped Ti3C2Tx MXene sensors along with excellent long-term stability. Our experimental measurements and density functional theory analysis offer insight into the mechanisms through which S-doping influences VOC analyte sensing capabilities of Ti3C2Tx MXenes, thus opening up future investigations on the development of high-performance room-temperature gas sensors.


Asunto(s)
Azufre , Titanio , Electrodos , Temperatura
9.
Sci Rep ; 10(1): 208, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937793

RESUMEN

Molecular dynamics (MD) simulations are carried out to investigate the effects of the type and spacing of FCC/BCC interfaces on the deformation and spall behavior. The simulations are carried out using model Cu/Ta multilayers with six different types of interfaces. The results suggest that interface type can significantly affect the structure and intensity of the incoming shock wave, change the activated slip systems, alter dislocation slip and twinning behavior, affect where and how voids are nucleated during spallation and the resulting spall strength. Moreover, the above aspects are significantly affected by the interface spacing. A transition from homogeneous to heterogeneous dislocation nucleation occurs as the interface spacing is decreased to 6 nm. Depending on interface type and spacing, damage (voids) nucleation and spall failure is observed to occur not only at the Cu/Ta interfaces, but also in the weaker Cu layer interior, or even in the stronger Ta layer interior, although different mechanisms underlie each of these three distinct failure modes. These findings point to the fact that, depending on the combination of interface type and spacing, interfaces can lead to both strengthening and weakening of the Cu/Ta multilayered microstructures.

10.
Sci Rep ; 9(1): 3550, 2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837557

RESUMEN

Large scale molecular dynamics (MD) simulations are carried out to investigate the twinning behavior as well as the atomic scale micromechanisms of growth of tension and compression twins in polycrystalline Mg microstructures at high strain rates. A new defect characterization algorithm (extended-common neighbor analysis (E-CNA)) is developed that allows for an efficient identification of various types of twins in HCP microstructures. Unlike other local orientation analysis methods, the E-CNA method allows for atomic scale characterization of the structure of different types of twin boundaries in HCP microstructures. The MD simulations suggest that the local orientation of individual grains with the loading axis plays a critical role in determining the ability of grains to nucleate either compression twins or tension twins. The twinning behavior is observed through nucleation of a pair of planar faults and lateral growth of the twins occurs through nucleation of steps along the planar faults. The kinetics of migration of steps that determine the rate of growth of twins are investigated at the atomic scales. The twin tip velocity computed at high strain rates compares well with the experimentally reported values in the literature.

11.
Sci Rep ; 8(1): 10075, 2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973642

RESUMEN

A critical challenge in the predictive capability of materials deformation behavior under extreme environments is the availability of computational methods to model the microstructural evolution at the mesoscale. The capability of the recently-developed quasi-coarse-grained dynamics (QCGD) method to model mesoscale behavior is demonstrated for the phenomenon of supersonic impact of 20 µm sized Al particles on to an Al substrate at various impact velocities and over time and length scales relevant to cold spray deposition. The QCGD simulations are able to model the kinetics related to heat generation and dissipation, and the pressure evolution and propagation, during single particle impact over the time and length scales that are important experimentally. These simulations are able to unravel the roles of particle and substrate deformation behavior that lead to an outward/upward flow of both the particle and the substrate, which is a likely precursor for the experimentally observed jetting and bonding of the particles during cold spray impact.

12.
Sci Rep ; 8(1): 9439, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29930303

RESUMEN

The chemical vapor deposition (CVD)-grown two-dimensional molybdenum disulfide (MoS2) structures comprise of flakes of few layers with different dimensions. The top layers are relatively smaller in size than the bottom layers, resulting in the formation of edges/steps across adjacent layers. The strain response of such few-layer terraced structures is therefore likely to be different from exfoliated few-layered structures with similar dimensions without any terraces. In this study, the strain response of CVD-grown few-layered MoS2 terraced structures is investigated at the atomic scales using classic molecular dynamics (MD) simulations. MD simulations suggest that the strain relaxation of CVD-grown triangular terraced structures is observed in the vertical displacement of the atoms across the layers that results in the formation of Moiré patterns. The Moiré islands are observed to nucleate at the corners or edges of the few-layered structure and propagate inwards under both tensile and compressive strains. The nucleation of these islands is observed to happen at tensile strains of ~ 2% and at compressive strains of ~2.5%. The vertical displacements of the atoms and the dimensions of the Moiré islands predicted using the MD simulation are in excellent agreement with that observed experimentally.

13.
Sci Rep ; 7(1): 12376, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28959010

RESUMEN

A long-standing problem in modeling of shock response of metals is the ability to model defect nucleation and evolution mechanisms during plastic deformation and failure at the mesoscales. This paper demonstrates the capability of the "quasi-coarse-grained dynamics" (QCGD) simulation method to unravel microstructural evolution of polycrystalline Al microstructures at the mesoscales. The various QCGD simulations discussed here investigate the shock response of Al microstructures comprising of grain sizes ranging from 50 nm to 3.20 µm and correspond to system sizes ranging from 150 nm to 9.6 µm, respectively. The QCGD simulations are validated by demonstrating the capability to retain atomistic characteristics of the wave propagation behavior, plastic deformation mechanisms (dislocation nucleation, dissociation/recombination behavior, dislocation interactions/reactions), evolution of damage (voids), and evolution of temperature during shock loading. The capability to unravel the mesoscale evolution of microstructure is demonstrated by investigating the effect of grain size, shock pulse and system size on the shock response and spall failure of the metal. The computed values of spall strengths predicted using the QCGD simulations agree very well with the trend predicted by MD simulations and a strain rate dependence of the spall strength is proposed that fits the experimentally available values in the literature.

14.
Sci Rep ; 7: 40862, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28102351

RESUMEN

The potential of the applicability of two-dimensional molybdenum disulfide (MoS2) structures, in various electronics, optoelectronics, and flexible devices requires a fundamental understanding of the effects of strain on the electronic, magnetic and optical properties. Particularly important is the recent capability to grow large flakes of few-layered structures using chemical vapor deposition (CVD) wherein the top layers are relatively smaller in size than the bottom layers, resulting in the presence of edges/steps across adjacent layers. This paper investigates the strain response of such suspended few-layered structures at the atomic scales using classic molecular dynamics (MD) simulations. MD simulations suggest that the suspended CVD-grown structures are able to relax the applied in-plane strain through the nucleation of ripples under both tensile and compressive loading conditions. The presence of terraced edges in these structures is the cause for the nucleation of ripples at the edges that grow towards the center of the structure under applied in-plane strains. The peak amplitudes of ripples observed are in excellent agreement with the experimental observations. The study provides critical insights into the mechanisms of strain relaxation of suspended few-layered MoS2 structures that determine the interplay between the mechanical response and the electronic properties of CVD-grown structures.

15.
Sci Rep ; 7: 40409, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28067334

RESUMEN

Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu5Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.

16.
ACS Nano ; 10(3): 3186-97, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26881920

RESUMEN

One of the most fascinating properties of molybdenum disulfide (MoS2) is its ability to be subjected to large amounts of strain without experiencing degradation. The potential of MoS2 mono- and few-layers in electronics, optoelectronics, and flexible devices requires the fundamental understanding of their properties as a function of strain. While previous reports have studied mechanically exfoliated flakes, tensile strain experiments on chemical vapor deposition (CVD)-grown few-layered MoS2 have not been examined hitherto, although CVD is a state of the art synthesis technique with clear potential for scale-up processes. In this report, we used CVD-grown terrace MoS2 layers to study how the number and size of the layers affected the physical properties under uniaxial and biaxial tensile strain. Interestingly, we observed significant shifts in both the Raman in-plane mode (as high as -5.2 cm(-1)) and photoluminescence (PL) energy (as high as -88 meV) for the few-layered MoS2 under ∼1.5% applied uniaxial tensile strain when compared to monolayers and few-layers of MoS2 studied previously. We also observed slippage between the layers which resulted in a hysteresis of the Raman and PL spectra during further applications of strain. Through DFT calculations, we contended that this random layer slippage was due to defects present in CVD-grown materials. This work demonstrates that CVD-grown few-layered MoS2 is a realistic, exciting material for tuning its properties under tensile strain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...