Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Oncol ; 57(4): 1013-1026, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32700755

RESUMEN

Cancer cells have developed numerous strategies to maintain their proliferative capacity and to withstand different kinds of stress. The mitochondrial stress­70 protein named glucose regulated protein 75 (GRP75), also known as mortalin, is an intriguing cancer pro­survival factor. It is constitutively expressed in normal tissues but is upregulated in many tumors, and was shown to be a cancer prognostic biomarker. Mortalin is an inhibitor of complement­dependent cytotoxicity (CDC) and may therefore protect cells from antibody­based immunotherapy. To target mortalin for cancer therapy, our laboratory designed several mortalin mimetic peptides with sequences predicted to be involved in mortalin binding to its client proteins. The peptides were synthesized with a C­terminal transactivator of transcription sequence. By using cell death methodologies, the mechanism of action of the mortalin mimetic peptides on cancer cells was studied. Two peptides in particular, Mot­P2 and Mot­P7, were found to be highly toxic to lymphoma and ovarian, breast and prostate carcinoma cells. The analysis of their mode of action revealed that they may induce, within minutes, plasma membrane perturbations and mitochondrial stress. Furthermore, Mot­P2 and Mot­P7 activated necrotic cell death, leading to plasma membrane perforation, mitochondrial inner membrane depolarization and decrease in ATP level. In addition, Mot­P7, but not Mot­P2, required extracellular calcium ions to fully mediate cell death and was partially inhibited by plasma membrane cholesterol. At sub­toxic concentrations, the two peptides moderately inhibited cancer cell proliferation and blocked cell cycle at G2/M. Both peptides may bind intracellularly to mortalin and/or a mortalin­binding protein, hence knocking down mortalin expression reduced cell death. Combining treatment with Mot­P2 or Mot­P7 and CDC resulted in increased cell death. This study identified highly cytotoxic mortalin mimetic peptides that may be used as monotherapy or combined with complement­activating antibody therapy to target mortalin for precision cancer therapy.


Asunto(s)
Proteínas del Sistema Complemento/inmunología , Proteínas HSP70 de Choque Térmico/farmacología , Proteínas Mitocondriales/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Péptidos/farmacología , Peptidomiméticos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/inmunología , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Péptidos/química , Unión Proteica
2.
Front Immunol ; 9: 306, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29527209

RESUMEN

The complement system participates in the pathogenesis of many diseases. Complement activation produces several active protein complexes and peptides, including the terminal C5b-9 complexes. It was reported that C5b-9 complexes insert into the plasma membrane and cause membrane perturbation, intracellular calcium surge, metabolic depletion, and osmotic lysis. Previously, we showed that complement-dependent cytotoxicity (CDC) is regulated by JNK and Bid. Here, we demonstrate that three mediators in TNFα-induced necroptosis (regulated necrosis), the receptor-interacting protein kinases, receptor-interacting protein kinase 1 (RIPK1) and receptor-interacting protein kinase 3 (RIPK3), and mixed-lineage kinase domain-like protein (MLKL), are activated by complement and contribute to CDC. Cell treatment with necrostatin-1 (Nec-1), a RIPK1 inhibitor, GSK'872, a RIPK3 inhibitor, or necrosulfonamide and GW806742X, MLKL inhibitors, restrain CDC. These findings were confirmed by using specific siRNAs targeting the synthesis of these proteins. Mouse fibroblasts lacking RIPK3 or MLKL were found to be less sensitive to C5b-9 than were wild-type (WT) fibroblasts. Enhanced CDC was achieved by RIPK1 or RIPK3 overexpression but not by the overexpression of a RHIM-RIPK1 mutant nor by a kinase-dead RIPK3 mutant. Nec-1 reduces the CDC of WT but not of RIPK3-knockout fibroblasts. Cells treated with a sublytic dose of complement exhibit co-localization of RIPK3 with RIPK1 in the cytoplasm and co-localization of RIPK3 and MLKL with C5b-9 at the plasma membrane. Data supporting cooperation among the RIP kinases, MLKL, JNK, and Bid in CDC are presented. These results provide a deeper insight into the cell death process activated by complement and identify potential points of cross talk between complement and other inducers of inflammation and regulated necrosis.


Asunto(s)
Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Fibroblastos/inmunología , Proteínas Quinasas/inmunología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología , Animales , Complejo de Ataque a Membrana del Sistema Complemento/genética , Proteínas del Sistema Complemento , Humanos , Células K562 , Ratones , Ratones Noqueados , Necrosis , Proteínas Quinasas/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética
3.
Mol Immunol ; 47(2-3): 310-7, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19864026

RESUMEN

Cell death and survival signals activated by the complement membrane attack complex C5b-9 play important roles in complement-associated diseases and in antibody-based cancer therapy. Here, we investigated the involvement of the JNK mitogen-activated protein kinase in C5b-9-induced cell lysis. Necrotic-type cell death regulation by JNK1 and JNK2 was selectively studied in mouse fibroblasts and human K562, HeLa and 293T cells. C5b-9 induced higher JNK activation than C5b-8. Pretreatment with a JNK inhibitor reduced cell sensitivity to complement-mediated lysis. KO cells deficient in either JNK1 or JNK2 were less sensitive to lysis than WT cells. This correlated with lower C3 and C5b-9 deposition on KO cells. Furthermore, silencing of JNK1 or JNK2 expression by RNA interference decreased cell lysis by complement. Reconstitution of JNK2 into JNK2-/- cells and over expression of JNK2 in WT cells increased C3 and C5b-9 deposition as well as cell sensitivity to complement-mediated lysis. Pretreatment of cells with the phosphotyrosine phosphatase inhibitor phenylarsine oxide increased JNK activation and JNK-dependent complement-mediated necrotic death of WT and JNK2-/- KO cells but not of JNK1-/- KO cells. The JNK inhibitor and PAO had no effect on complement-mediated lysis in cells lacking Bid, suggesting involvement of Bid in the JNK lytic pathway. Our results demonstrate that complement C5b-9 induce a JNK/Bid-dependent and JNK-independent necrotic cell death. Both JNK1 and JNK2 have cytotoxic potential, however JNK2 is the primary signal transducer.


Asunto(s)
Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Animales , Arsenicales/farmacología , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Muerte Celular/inmunología , Línea Celular Tumoral , Citotoxicidad Inmunológica/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Fibroblastos/inmunología , Silenciador del Gen/efectos de los fármacos , Humanos , Ratones , Proteína Quinasa 8 Activada por Mitógenos/deficiencia , Proteína Quinasa 9 Activada por Mitógenos/deficiencia , Fosfoproteínas Fosfatasas/metabolismo , ARN Interferente Pequeño/metabolismo , Tirosina/metabolismo
4.
J Immunol ; 182(1): 515-21, 2009 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19109183

RESUMEN

The membrane attack complex (MAC) of the complement system induces a necrotic-type cell death. Earlier findings suggested that Bcl-2 protects cells from MAC-induced necrosis. Here we examined the involvement of Bid, a proapoptotic protein, in MAC-induced cytotoxicity. Bid knockout (Bid-/-) mouse embryonic fibroblasts (MEF) and primary fibroblasts were damaged by complement but to a significantly lower extent than wild-type (WT) fibroblasts. Bid silencing with small interfering RNA duplexes led to elevated resistance of mouse fibroblasts, human K562, and Jurkat cells to lysis by complement. Bid-/- MEF were also resistant to toxic doses of streptolysin O, melittin, and A23187. Analysis of complement protein deposition on fibroblasts demonstrated that less complement C3 and C9 bound to Bid-/- than to WT cells, even though expression of the membrane complement inhibitors Crry and CD59 was relatively reduced on Bid-/- cells. Bid was rapidly cleaved in WT MEF subjected to lytic doses of MAC. Pretreatment of the cells with the pan-caspase inhibitor z-Val-Ala-Asp(OMe)-fluoromethylketone reduced Bid cleavage and cell lysis. These results indicate that complement MAC activates two cell death pathways, one involving caspases and Bid and one that is Bid-independent.


Asunto(s)
Proteína Proapoptótica que Interacciona Mediante Dominios BH3/fisiología , Complejo de Ataque a Membrana del Sistema Complemento/fisiología , Transducción de Señal/inmunología , Animales , Animales Recién Nacidos , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/deficiencia , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Caspasas/metabolismo , Muerte Celular/inmunología , Línea Celular Transformada , Células Cultivadas , Fibroblastos/inmunología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Inmunidad Innata/genética , Células Jurkat , Células K562 , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Necrosis , Transducción de Señal/genética
5.
Mol Immunol ; 41(6-7): 583-97, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15219997

RESUMEN

The complement system is composed of soluble blood plasma proteins and cell membrane proteins. A major function of the soluble complement proteins is to bind to and destroy invading pathogens. The membrane proteins of the complement system are divided into complement receptors and complement regulatory proteins. Complement receptors on phagocytic cells promote binding and engulfment of pathogens coated with complement opsonins, whereas complement regulatory proteins protect healthy tissues from accidental damage by the soluble complement proteins. Upon binding of complement proteins or protein fragments that are generated during complement activation, these receptors and regulatory proteins transduce various signals into cells bearing them. The complement membrane attack complex C5b-9 binds to cell membranes, independent of any receptor, and also activates multiple signaling pathways. The receptor-dependent and -independent signals transduced by complement components are of great consequence to health and disease. Complement plays an important role in immunoregulation by activating B and T lymphocytes. It may also exert pro- or anti-apoptotic effects on various cell types. At sublytic doses, the complement membrane attack complex has wide-range effects on many cell types leading to cellular responses, such as secretion, adherence, aggregation, chemotaxis and even cell division. Sublytic complement also induces increased cell resistance to lytic doses of complement. Finally, certain pathogens take advantage of complement membrane proteins to gain entry into cells. The emerging data on these complement-related signaling pathways is hereby described.


Asunto(s)
Proteínas del Sistema Complemento/fisiología , Linfocitos/fisiología , Transducción de Señal/fisiología , Animales , Antígenos CD/inmunología , Antígenos CD/fisiología , Apoptosis/inmunología , Apoptosis/fisiología , Enfermedades Transmisibles/inmunología , Proteínas del Sistema Complemento/inmunología , Humanos , Linfocitos/inmunología , Transducción de Señal/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...