Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Science ; 384(6703): 1429-1435, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38935712

RESUMEN

Knowledge of Cambrian animal anatomy is limited by preservational processes that result in compaction, size bias, and incompleteness. We documented pristine three-dimensional (3D) anatomy of trilobites fossilized through rapid ash burial from a pyroclastic flow entering a shallow marine environment. Cambrian ellipsocephaloid trilobites from Morocco are articulated and undistorted, revealing exquisite details of the appendages and digestive system. Previously unknown anatomy includes a soft-tissue labrum attached to the hypostome, a slit-like mouth, and distinctive cephalic feeding appendages. Our findings resolve controversy over whether the trilobite hypostome is the labrum or incorporates it and establish crown-group euarthropod homologies in trilobites. This occurrence of moldic fossils with 3D soft parts highlights volcanic ash deposits in marine settings as an underexplored source for exceptionally preserved organisms.


Asunto(s)
Fósiles , Erupciones Volcánicas , Fósiles/anatomía & histología , Animales , Artrópodos/anatomía & histología , Artrópodos/clasificación , Marruecos
2.
Genome Biol Evol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913570

RESUMEN

Vertebrate evolution has been punctuated by three whole genome duplication (WGD) events that have been implicated causally in phenotypic evolution, from the origin of phenotypic novelties to explosive diversification. Arguably the most dramatic of these is the 3R WGD event associated with the origin of teleost fishes which comprise more than half of all living vertebrate species. However, tests of a causal relationship between WGD and teleost diversification have proven difficult due to the challenge of establishing the timing of these phenomena. Here we show, based on molecular clock dating of concatenated gene alignments, that the 3R WGD event occurred in the early-middle Permian (286.18-267.20 Million years ago; Ma), 52.02-12.84 million years (Myr) before the divergence of crown-teleosts in the latest-Permian-earliest Late Triassic (254.36-234.16 Ma) and long before the major pulses of teleost diversification in Ostariophysi and Percomorpha (56.37-100.17 Myr and at least 139.24-183.29 Myr later, respectively). The extent of this temporal gap between putative cause and effect precludes 3R as a deterministic driver of teleost diversification. However, these age constraints remain compatible with the expectations of a prolonged rediploidization process following WGD which, through the effects of chromosome rearrangement and gene loss, remains a viable mechanism to explain the evolution of teleost novelties and diversification.

3.
New Phytol ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38840553

RESUMEN

Contemporary glaciers are inhabited by streptophyte algae that balance photosynthesis and growth with tolerance of low temperature, desiccation and UV radiation. These same environmental challenges have been hypothesised as the driving force behind the evolution of land plants from streptophyte algal ancestors in the Cryogenian (720-635 million years ago). We sequenced, assembled and analysed the metagenome-assembled genome of the glacier alga Ancylonema nordenskiöldii to investigate its adaptations to life in ice, and whether this represents a vestige of Cryogenian exaptations. Phylogenetic analysis confirms the placement of glacier algae within the sister lineage to land plants, Zygnematophyceae. The metagenome-assembled genome is characterised by an expansion of genes involved in tolerance of high irradiance and UV light, while lineage-specific diversification is linked to the novel screening pigmentation of glacier algae. We found no support for the hypothesis of a common genomic basis for adaptations to ice and to land in streptophytes. Comparative genomics revealed that the reductive morphological evolution in the ancestor of Zygnematophyceae was accompanied by reductive genome evolution. This first genome-scale data for glacier algae suggests an Ancylonema-specific adaptation to the cryosphere, and sheds light on the genome evolution of land plants and Zygnematophyceae.

4.
Proc Biol Sci ; 291(2023): 20240101, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38808442

RESUMEN

The early Ediacaran Weng'an biota (Doushantuo Formation, South China) provides a rare window onto the period of Earth history in which molecular timescales have inferred the initial phase of crown-metazoan diversification. Interpretation of the embryo-like fossils that dominate the biota remains contentious because they are morphologically simple and so difficult to constrain phylogenetically. Spiralicellula from the Weng'an biota is distinguished by spiral internal bodies, allied through development to Megasphaera or Helicoforamina and interpreted variously as metazoan embryos, encysting protists, or chlorophycean green algae. Here we show, using X-ray microtomography, that Spiralicellula has a single-layered outer envelope and no more than 32 internal cells, often preserving a nucleus and yolk granules. There is no correlation between the extent of spiral development and the number of component cells; rather, the spiral developed with each palintomic stage, associated with cell disaggregation and reorientation. Evidence for envelope thinning and cell loss was observed in all developmental stages, reflecting non-deterministic shedding of gametes or amoebae. The developmental biology of Spiralicellula is similar to Megasphaera and Helicoforamina, which otherwise exhibit more rounds of palintomy. We reject a crown-metazoan affinity for Spiralicellula and all other components of the Weng'an biota, diminishing the probability of crown-metazoan diversification before the early Ediacaran.


Asunto(s)
Evolución Biológica , Fósiles , Fósiles/anatomía & histología , Animales , China , Microtomografía por Rayos X , Filogenia
5.
Proc Biol Sci ; 291(2019): 20232258, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38531402

RESUMEN

Attempts to explain the origin and diversification of vertebrates have commonly invoked the evolution of feeding ecology, contrasting the passive suspension feeding of invertebrate chordates and larval lampreys with active predation in living jawed vertebrates. Of the extinct jawless vertebrates that phylogenetically intercalate these living groups, the feeding apparatus is well-preserved only in the early diverging stem-gnathostome heterostracans. However, its anatomy remains poorly understood. Here, we use X-ray microtomography to characterize the feeding apparatus of the pteraspid heterostracan Rhinopteraspis dunensis (Roemer, 1855). The apparatus is composed of 13 plates arranged approximately bilaterally, most of which articulate from the postoral plate. Our reconstruction shows that the oral plates were capable of rotating around the transverse axis, but likely with limited movement. It also suggests the nasohypophyseal organs opened internally, into the pharynx. The functional morphology of the apparatus in Rhinopteraspis precludes all proposed interpretations of feeding except for suspension/deposit feeding and we interpret the apparatus as having served primarily to moderate the oral gape. This is consistent with evidence that at least some early jawless gnathostomes were suspension feeders and runs contrary to macroecological scenarios that envisage early vertebrate evolution as characterized by a directional trend towards increasingly active food acquisition.


Asunto(s)
Evolución Biológica , Fósiles , Animales , Peces/anatomía & histología , Vertebrados/anatomía & histología , Maxilares/anatomía & histología , Filogenia
6.
Genome Biol Evol ; 16(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38333966

RESUMEN

Earth was impacted by global glaciations during the Cryogenian (720 to 635 million years ago; Ma), events invoked to explain both the origins of multicellularity in Archaeplastida and radiation of the first land plants. However, the temporal relationship between these environmental and biological events is poorly established, due to a paucity of molecular and fossil data, precluding resolution of the phylogeny and timescale of archaeplastid evolution. We infer a time-calibrated phylogeny of early archaeplastid evolution based on a revised molecular dataset and reappraisal of the fossil record. Phylogenetic topology testing resolves deep archaeplastid relationships, identifying two clades of Viridiplantae and placing Bryopsidales as sister to the Chlorophyceae. Our molecular clock analysis infers an origin of Archaeplastida in the late-Paleoproterozoic to early-Mesoproterozoic (1712 to 1387 Ma). Ancestral state reconstruction of cytomorphological traits on this time-calibrated tree reveals many of the independent origins of multicellularity span the Cryogenian, consistent with the Cryogenian multicellularity hypothesis. Multicellular rhodophytes emerged 902 to 655 Ma while crown-Anydrophyta (Zygnematophyceae and Embryophyta) originated 796 to 671 Ma, broadly compatible with the Cryogenian plant terrestrialization hypothesis. Our analyses resolve the timetree of Archaeplastida with age estimates for ancestral multicellular archaeplastids coinciding with the Cryogenian, compatible with hypotheses that propose a role of Snowball Earth in plant evolution.


Asunto(s)
Chlorophyta , Embryophyta , Filogenia , Evolución Biológica , Plantas , Fósiles , Evolución Molecular
7.
Curr Biol ; 34(3): R86-R89, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38320478

RESUMEN

Land plants are celebrated as one of the three great instances of complex multicellularity, but new phylogenomic and phenotypic analyses are revealing deep evolutionary roots of multicellularity among algal relatives, prompting questions about the causal basis of this major evolutionary transition.


Asunto(s)
Embryophyta , Plantas , Evolución Biológica , Filogenia , Aclimatación
8.
Nat Ecol Evol ; 8(3): 519-535, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38216617

RESUMEN

Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish, Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian-earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity.


Asunto(s)
Anguila Babosa , Animales , Filogenia , Anguila Babosa/genética , Duplicación de Gen , Vertebrados/genética , Genoma , Lampreas/genética
9.
Nat Commun ; 14(1): 7456, 2023 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-37978174

RESUMEN

The timing of early cellular evolution, from the divergence of Archaea and Bacteria to the origin of eukaryotes, is poorly constrained. The ATP synthase complex is thought to have originated prior to the Last Universal Common Ancestor (LUCA) and analyses of ATP synthase genes, together with ribosomes, have played a key role in inferring and rooting the tree of life. We reconstruct the evolutionary history of ATP synthases using an expanded taxon sampling set and develop a phylogenetic cross-bracing approach, constraining equivalent speciation nodes to be contemporaneous, based on the phylogenetic imprint of endosymbioses and ancient gene duplications. This approach results in a highly resolved, dated species tree and establishes an absolute timeline for ATP synthase evolution. Our analyses show that the divergence of ATP synthase into F- and A/V-type lineages was a very early event in cellular evolution dating back to more than 4 Ga, potentially predating the diversification of Archaea and Bacteria. Our cross-braced, dated tree of life also provides insight into more recent evolutionary transitions including eukaryogenesis, showing that the eukaryotic nuclear and mitochondrial lineages diverged from their closest archaeal (2.67-2.19 Ga) and bacterial (2.58-2.12 Ga) relatives at approximately the same time, with a slightly longer nuclear stem-lineage.


Asunto(s)
Archaea , Bacterias , Filogenia , Bacterias/genética , Archaea/genética , Mitocondrias/genética , Adenosina Trifosfato , Evolución Molecular , Eucariontes/genética , Evolución Biológica
10.
Nat Plants ; 9(10): 1618-1626, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37666963

RESUMEN

The plant kingdom exhibits diverse bodyplans, from single-celled algae to complex multicellular land plants, but it is unclear how this phenotypic disparity was achieved. Here we show that the living divisions comprise discrete clusters within morphospace, separated largely by reproductive innovations, the extinction of evolutionary intermediates and lineage-specific evolution. Phenotypic complexity correlates not with disparity but with ploidy history, reflecting the role of genome duplication in plant macroevolution. Overall, the plant kingdom exhibits a pattern of episodically increasing disparity throughout its evolutionary history that mirrors the evolutionary floras and reflects ecological expansion facilitated by reproductive innovations. This pattern also parallels that seen in the animal and fungal kingdoms, suggesting a general pattern for the evolution of multicellular bodyplans.


Asunto(s)
Evolución Biológica , Plantas , Animales , Plantas/genética
11.
Curr Biol ; 33(17): R919-R929, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37699353

RESUMEN

The origin of eukaryotes is among the most contentious debates in evolutionary biology, attracting multiple seemingly incompatible theories seeking to explain the sequence in which eukaryotic characteristics were acquired. Much of the controversy arises from differing views on the defining characteristics of eukaryotes. We argue that eukaryotes should be defined phylogenetically, and that doing so clarifies where competing hypotheses of eukaryogenesis agree and how we may test among aspects of disagreement. Some hypotheses make predictions about the phylogenetic origins of eukaryotic genes and are distinguishable on that basis. However, other hypotheses differ only in the order of key evolutionary steps, like mitochondrial endosymbiosis and nuclear assembly, which cannot currently be distinguished phylogenetically. Stages within eukaryogenesis may be made identifiable through the absolute dating of gene duplicates that map to eukaryotic traits, such as in genes of host or mitochondrial origin that duplicated and diverged functionally prior to emergence of the last eukaryotic common ancestor. In this way, it may finally be possible to distinguish heat from light in the debate over eukaryogenesis.


Asunto(s)
Eucariontes , Células Eucariotas , Eucariontes/genética , Filogenia , Evolución Biológica , Disentimientos y Disputas
12.
Nature ; 621(7980): 696-698, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37730784

Asunto(s)
Cabeza , Cráneo
13.
Proc Biol Sci ; 290(2004): 20230522, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37554036

RESUMEN

Analyses of morphological disparity can incorporate living and fossil taxa to facilitate the exploration of how phenotypic variation changes through time. However, taphonomic processes introduce non-random patterns of data loss in fossil data and their impact on perceptions of disparity is unclear. To address this, we characterize how measures of disparity change when simulated and empirical data are degraded through random and structured data loss. We demonstrate that both types of data loss can distort the disparity of clades, and that the magnitude and direction of these changes varies between the most commonly employed distance metrics and disparity indices. The inclusion of extant taxa and exceptionally preserved fossils mitigates these distortions and clarifies the full extent of the data lost, most of which would otherwise go uncharacterized. This facilitates the use of ancestral state estimation and evolutionary simulations to further control for the effects of data loss. Where the addition of such reference taxa is not possible, we urge caution in the extrapolation of general patterns in disparity from datasets that characterize subsets of phenotype, which may represent no more than the traits that they sample.


Asunto(s)
Evolución Biológica , Fósiles , Filogenia , Fenotipo
15.
Curr Biol ; 33(15): 3073-3082.e3, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37379845

RESUMEN

The timing of the placental mammal radiation has been the focus of debate over the efficacy of competing methods for establishing evolutionary timescales. Molecular clock analyses estimate that placental mammals originated before the Cretaceous-Paleogene (K-Pg) mass extinction, anywhere from the Late Cretaceous to the Jurassic. However, the absence of definitive fossils of placentals before the K-Pg boundary is compatible with a post-Cretaceous origin. Nevertheless, lineage divergence must occur before it can be manifest phenotypically in descendent lineages. This, combined with the non-uniformity of the rock and fossil records, requires the fossil record to be interpreted rather than read literally. To achieve this, we introduce an extended Bayesian Brownian bridge model that estimates the age of origination and, where applicable, extinction through a probabilistic interpretation of the fossil record. The model estimates the origination of placentals in the Late Cretaceous, with ordinal crown groups originating at or after the K-Pg boundary. The results reduce the plausible interval for placental mammal origination to the younger range of molecular clock estimates. Our findings support both the Long Fuse and Soft Explosive models of placental mammal diversification, indicating that the placentals originated shortly prior to the K-Pg mass extinction. The origination of many modern mammal lineages overlapped with and followed the K-Pg mass extinction.


Asunto(s)
Euterios , Fósiles , Animales , Femenino , Embarazo , Filogenia , Teorema de Bayes , Placenta , Evolución Biológica , Mamíferos/genética , Extinción Biológica
16.
Natl Sci Rev ; 10(7): nwad050, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37266551

RESUMEN

Galeaspids are extinct jawless relatives of living jawed vertebrates whose contribution to understanding the evolutionary assembly of the gnathostome bodyplan has been limited by absence of postcranial remains. Here, we describe Foxaspis novemura gen. et sp. nov., based on complete articulated remains from a newly discovered Konservat-Lagerstätte in the Early Devonian (Pragian, ∼410 Ma) of Guangxi, South China. F. novemura had a broad, circular dorso-ventrally compressed headshield, slender trunk and strongly asymmetrical hypochordal tail fin comprised of nine ray-like scale-covered digitations. This tail morphology contrasts with the symmetrical hypochordal tail fin of Tujiaaspis vividus, evidencing disparity in galeaspid postcranial anatomy. Analysis of swimming speed reveals galeaspids as moderately fast swimmers, capable of achieving greater cruising swimming speeds than their more derived jawless and jawed relatives. Our analyses reject the hypothesis of a driven trend towards increasingly active food acquisition which has been invoked to characterize early vertebrate evolution.

17.
Biol Lett ; 19(1): 20220497, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36628953

RESUMEN

Panarthropoda, the clade comprising the phyla Onychophora, Tardigrada and Euarthropoda, encompasses the largest majority of animal biodiversity. The relationships among the phyla are contested and resolution is key to understanding the evolutionary assembly of panarthropod bodyplans. Molecular phylogenetic analyses generally support monophyly of Onychophora and Euarthropoda to the exclusion of Tardigrada (Lobopodia hypothesis), which is also supported by some analyses of morphological data. However, analyses of morphological data have also been interpreted to support monophyly of Tardigrada and Euarthropoda to the exclusion of Onychophora (Tactopoda hypothesis). Support has also been found for a clade of Onychophora and Tardigrada that excludes Euarthropoda (Protarthropoda hypothesis). Here we show, using a diversity of phylogenetic inference methods, that morphological datasets cannot discriminate statistically between the Lobopodia, Tactopoda and Protarthropoda hypotheses. Since the relationships among the living clades of panarthropod phyla cannot be discriminated based on morphological data, we call into question the accuracy of morphology-based phylogenies of Panarthropoda that include fossil species and the evolutionary hypotheses based upon them.


Asunto(s)
Artrópodos , Tardigrada , Animales , Filogenia , Artrópodos/genética , Artrópodos/anatomía & histología , Incertidumbre , Evolución Biológica , Tardigrada/genética , Tardigrada/anatomía & histología
18.
Methods Mol Biol ; 2545: 139-154, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36720811

RESUMEN

The timing of whole-genome duplication (WGD) events is crucial to understanding their role in evolution and underpins many hypotheses linking WGD to increased diversity and complexity. As such, means of estimating the timing of the WGD events relative to their macroevolutionary outcomes are of considerable importance. Molecular clock methods facilitate direct estimation of the absolute timing of WGD events, integrating information on the rate of sequence evolution between species while accommodating the uncertainty inherent to the fossil record. We present an explanation of the best practice for constructing fossil calibrations and estimating the age of WGD events via molecular clock methods in the program MCMCtree, with an example dataset based on a well-characterized WGD event within the flowering dogwoods (Cornus). The approach presented herein allows for the estimation of the age of WGD events and subsequent speciation events, allowing the relationship between WGD and the macroevolutionary outcomes to be explored. In our example, we show that in the case of flowering dogwoods, the WGD event long predates the end-Cretaceous mass extinction and that the two events may be independent.


Asunto(s)
Extinción Biológica , Duplicación de Gen , Calibración , Fósiles
19.
Trends Plant Sci ; 28(3): 312-329, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36328872

RESUMEN

Plant (archaeplastid) evolution has transformed the biosphere, but we are only now beginning to learn how this took place through comparative genomics, phylogenetics, and the fossil record. This has illuminated the phylogeny of Archaeplastida, Viridiplantae, and Streptophyta, and has resolved the evolution of key characters, genes, and genomes - revealing that many key innovations evolved long before the clades with which they have been casually associated. Molecular clock analyses estimate that Streptophyta and Viridiplantae emerged in the late Mesoproterozoic to late Neoproterozoic, whereas Archaeplastida emerged in the late-mid Palaeoproterozoic. Together, these insights inform on the coevolution of plants and the Earth system that transformed ecology and global biogeochemical cycles, increased weathering, and precipitated snowball Earth events, during which they would have been key to oxygen production and net primary productivity (NPP).


Asunto(s)
Evolución Biológica , Plantas , Plantas/genética , Filogenia , Ecología , Genómica , Evolución Molecular
20.
R Soc Open Sci ; 9(10): 220115, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36249341

RESUMEN

The Wangcun fossil Lagerstätte in Hunan, South China, has yielded hundreds of fossilized embryos of Markuelia hunanensis representing different developmental stages. Internal tissues have only rarely been observed, impeding further understanding of the soft tissue anatomy, phylogenetic affinity and evolutionary significance of Markuelia. In this study, we used synchrotron radiation X-ray tomographic microscopy (SRXTM) to study a new collection of fossil embryos from the Wangcun fossil Lagerstätte. We describe specimens exhibiting a spectrum of preservation states, the best of which preserves palisade structures underneath the cuticle of the head and tail, distinct from patterns of centripetal mineralization of the cuticle and centrifugal mineralization of hypha-like structures, seen elsewhere in this specimen and other fossils within the same assemblage. Our computed tomographic reconstruction of these mineralization phases preserves the gross morphology of (i) longitudinal structures associated with the tail spines, which we interpret as the proximal ends of longitudinal muscles, and (ii) a ring-shaped structure internal to the introvert, which we interpret as a ring-shaped brain, as anticipated of the cycloneuralian affinity of Markuelia. This is the first record of a fossilized nervous system in a scalidophoran, and the first instance in Orsten-style preservation, opening the potential for further such records within this widespread mode of high-fidelity three-dimensional preservation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...