Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39345593

RESUMEN

Human cytomegalovirus (HCMV) is a ß-herpesvirus which is ubiquitous in the human population. HCMV has the largest genome of all known human herpesviruses, and thus encodes a large array of proteins that affect pathogenesis in different cell types. Given the large genome and the ability of HCMV to replicate in a range of cells, investigators have begun to identify viral proteins required for cell type-specific replication. There are four proteins encoded in the HCMV genome that are homologous to human G protein-coupled receptors (GPCRs); these viral-encoded GPCRs (vGPCRs) are UL33, UL78, US27, and US28. In the current study, we find that deletion of all four vGPCR genes from a clinical isolate of HCMV severely attenuates lytic replication in both primary human salivary gland epithelial cells, as well as ARPE-19 retinal epithelial cells as evidenced by significant decreases in immediate early gene expression and virus production. Deletion of UL33 from the HCMV genome also results in a failure to efficiently replicate in epithelial cells, and this defect is manifested by decreased levels of immediate early, early, and late gene expression, as well as reduced viral production. We find that similar to US28, UL33 constitutively activates Gαq-dependent PLC-ß signaling to high levels in these epithelial cells. We also find that UL33 transcription is more complicated than originally believed, and there is the potential for the virus to utilize various 5' UTRs to create novel UL33 proteins that are all capable of constitutive Gαq signaling. Taken together, these studies suggest that UL33 driven signaling is important for lytic HCMV replication in cells of epithelial origin.

2.
Sci Adv ; 8(43): eadd1168, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36288299

RESUMEN

Cytomegalovirus (CMV) reactivation from latency following immune dysregulation remains a serious risk for patients, often causing substantial morbidity and mortality. Here, we demonstrate the CMV-encoded G protein-coupled receptor, US28, in coordination with cellular Ephrin receptor A2, attenuates mitogen-activated protein kinase signaling, thereby limiting viral replication in latently infected primary monocytes. Furthermore, treatment of latently infected primary monocytes with dasatinib, a Food and Drug Association-approved kinase inhibitor used to treat a subset of leukemias, results in CMV reactivation. These ex vivo data correlate with our retrospective analyses of the Explorys electronic health record database, where we find dasatinib treatment is associated with a significant risk of CMV-associated disease (odds ratio 1.58, P = 0.0004). Collectively, our findings elucidate a signaling pathway that plays a central role in the balance between CMV latency and reactivation and identifies a common therapeutic cancer treatment that elevates the risk of CMV-associated disease.

3.
J Cell Sci ; 134(5)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33199520

RESUMEN

Human cytomegalovirus (HCMV) establishes life-long latent infection in hematopoietic progenitor cells and circulating monocytes in infected individuals. Myeloid differentiation coupled with immune dysregulation leads to viral reactivation, which can cause severe disease and mortality. Reactivation of latent virus requires chromatin reorganization and the removal of transcriptional repressors in exchange for transcriptional activators. While some factors involved in these processes are identified, a complete characterization of the viral and cellular factors involved in their upstream regulation remains elusive. Herein, we show the HCMV-encoded G protein-coupled receptor (GPCR), UL33, is expressed during latency. Although this viral GPCR is not required to maintain latent infection, our data reveal UL33-mediated signaling is important for efficient viral reactivation. Additionally, UL33 signaling induces cellular cyclic AMP response element binding protein (CREB1, referred to here as CREB) phosphorylation, a transcription factor that promotes reactivation when recruited to the major immediate early (MIE) enhancer/promoter. Finally, targeted pharmacological inhibition of CREB activity reverses the reactivation phenotype of the UL33 signaling-deficient mutant. In sum, our data reveal UL33-mediated signaling functions to activate CREB, resulting in successful viral reactivation.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Infecciones por Citomegalovirus , Citomegalovirus , Receptores Acoplados a Proteínas G , Activación Viral , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citomegalovirus/genética , Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/genética , Humanos , Transducción de Señal
4.
Pathogens ; 9(11)2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33113934

RESUMEN

Human cytomegalovirus (HCMV) is a ubiquitous herpesviral pathogen that results in life-long infection. HCMV maintains a latent or quiescent infection in hematopoietic cells, which is broadly defined by transcriptional silencing and the absence of de novo virion production. However, upon cell differentiation coupled with immune dysfunction, the virus can reactivate, which leads to lytic replication in a variety of cell and tissue types. One of the mechanisms controlling the balance between latency and reactivation/lytic replication is the regulation of the major immediate-early (MIE) locus. This enhancer/promoter region is complex, and it is regulated by chromatinization and associated factors, as well as a variety of transcription factors. Herein, we discuss these factors and how they influence the MIE locus, which ultimately impacts the phase of HCMV infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...